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Abstract

Structural models for forward electricity prices are of great relevance nowadays,
given the major structural changes in the market due to the increase of renew-
able energy in the production mix. In this study, we derive a spatio-temporal
dynamical model based on the Heath-Jarrow-Morton (HJM) approach under the
Musiela parametrization, which ensures an arbitrage-free model for electricity for-
ward prices. The model is fitted to a unique data set of historical price forward
curves. As a particular feature of the model, we disentangle the temporal from
spatial (maturity) effects on the dynamics of forward prices, and shed light on the
statistical properties of risk premia, of the noise volatility term structure and of the
spatio-temporal noise correlation structures. We find that the short-term risk pre-
mia oscillates around zero, but becomes negative in the long run. We identify the
Samuelson effect in the volatility term structure and volatility bumps, explained by
market fundamentals. Furthermore we find evidence for coloured noise and corre-
lated residuals, which we model by a Hilbert space-valued normal inverse Gaussian
Lévy process with a suitable covariance functional.
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1 Introduction

There exist two main approaches for modelling forward prices in commodity and energy

markets. The classical way goes by specifying a stochastic model for the spot price, and

from this model derive the dynamics of forward prices based on no-arbitrage principles

(see Lucia and Schwartz (2002), Cartea and Figueroa (2005), Weron and Zator (2014),

Benth, Kallsen, and Meyer-Brandis (2007), Barndorff-Nielsen, Benth, and Veraart (2013)

and Benth, Klüppelberg, Müller, and Vos (2014)). The alternative is to follow the Heath–

Jarrow–Morton approach and to specify the dynamics of the forward prices directly, as it

has been done in Roncoroni and Guiotto (2001), Benth and Koekebakker (2008), Weron

and Borak (2008) and Kiesel, Schindlmayr, and Boerger (2009). All these studies model

the forward prices using multifactor models driven by Brownian motion. However, em-

pirical findings in Koekebakker and Ollmar (2005), Frestad (2008) suggest that there is

a substantial amount of variation in forward prices which cannot be explained by a few

common factors. Furthermore, the models that directly specify the dynamics of forward

contracts ignore the fact that the returns of forward prices in electricity markets are far

from being Gaussian distributed and have possible stochastic volatility effects.

Random-field models for forward prices in power markets have been explored statis-

tically and mathematically by Andresen, Koekebakker, and Westgaard (2010). There the

authors model electricity forwards returns for different times to maturity using a multi-

variate normal inverse Gaussian (NIG) distribution to capture the idiosyncratic risk and

heavy tails behavior and conclude the superiority of this approach versus Gaussian-based

multifactor models in terms of goodness of fit. Their analysis seems to be based on the

assumption that forward prices follow an exponential spatio-temporal stochastic process.

When modeling forward prices evolving along time to maturity rather than time at matu-

rity, one must be careful with how the time to maturity affects a price change. Indeed, in

this so-called Musiela parametrization context of forward prices an additional drift term

must be added to the dynamics to preserve arbitrage-freeness of the model.
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In this paper we propose to model the forward price dynamics by a spatio-temporal

random field based on the Heath-Jarrow-Morton (HJM) approach under the Musiela

parametrization (see Heath, Jarrow, and Morton (1992)), which ensures an arbitrage-free

dynamics. After discretizing the model in time and space, we can separate seasonal fea-

tures from risk premium and random perturbations of the prices, and apply this to obtain

information of the probabilistic characteristics of the data. Our model formulation dis-

entangles typical components of forward prices like: the deterministic seasonality pattern

and the stochastic component including the market price of risk and the noise. We show

the importance of rigourously modeling each component in the context of an empirical

application to electricity forward prices, in which a unique panel data set of 2’386 hourly

price forward curves is employed for the German electricity index PHELIX. The index is

generated each day for a horizon of 5 years, ranging from 01/01/2009 until 15/07/2015.

Each day a new price forward curve (PFC) is generated based on the newest information

from current futures prices observed at EPEX.1

The dynamics of price forward curves (PFCs) are modeled with respect to two

dimensions: temporal and spatial (the space dimension here refers to time to maturity of

the forward). In particular, the changes in the level of a PFC for one specific maturity

point between consecutive days reflect two features:

Firstly, as time passes, dynamics in time of on-going futures prices with a certain

delivery period reflect changes in the market expectation. In particular, maturing futures

are replaced by new ones in the market.2 Changes in the market expectations reflect

updates in weather forecasts, energy policy announcements or expected market structural

changes. Germany adopted the Renewable Energy Act (EEG) in 2000, accordingly to

which producers of renewable energies (wind, photovoltaic etc.) receive a guaranteed

compensation (technology dependent feed-in tariffs). Renewable energies are fed with

1Electricity for delivery on the next day is traded at the European Power Exchange (EPEX SPOT) in
Paris.

2In the German electricity market, weekly, monthly, quarterly or yearly futures are traded.

2



priority into the grid, replacing thus in production other traditional fuels (oil, gas, coal).

Given the difficulty of getting accurate weather forecasts, electricity demand/supply dis-

equilibria became more frequent, which increased the volatility of electricity prices. Fur-

thermore, it has been empirically shown that due to the low marginal production costs

of wind and photovoltaic, the general level of electricity prices decreased over time (see

Paraschiv, Erni, and Pietsch (2014)), which explains the shift in time of the general level

of the analyzed PFCs.

Secondly, as time passes, the time to maturity of one specific product decreases and

maturing futures are replaced by new ones in the market. In the German electricity mar-

ket, weekly, monthly, quarterly and yearly futures are traded. Given the little number

of different exchange-traded futures, and thus different maturities, the stochastic compo-

nent of the (deseasonalized) PFCs shows a typical step-wise pattern. Hence, consecutive

changes in time in the level of the PFC for a fixed maturity point on the curve are in-

fluenced additionally by changes between two maturity points on the initial curve, which

accounts for the time to maturity dimension. Both effects are displayed in Figure 1.

1
t
2
t

Change in the market

expectation ( )t
Change due to decreasing

time to maturity( )x

Figure 1: The effect of time and maturity change on the dynamics of forward prices.

Our proposed model is fitted to the observed PFCs. We first perform a deseason-

alization of the initial curves, where the seasonal component takes into account typical

patterns observed in electricity prices (see Blöchlinger (2008), Paraschiv (2013)). We fur-
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ther estimate the market price of risk in the deseasonalized curves (stochastic component)

and examine, in this context, the distribution of the noise volatility and its spatio-temporal

correlations structures. Our results show that the short-term risk premia oscillates around

zero, but becomes negative in the long run, which is consistent with the empirical liter-

ature (Burger, Graeber, and Schindlmayr (2007)). The descriptive statistics of the noise

marginals reveals clear evidence for a coloured-noise with leptokurtic distribution and

heavy-tails, which we suggest to model by a normal inverse Gaussian distribution (NIG).3

We further examine the term structure of volatility where we are able to identify the

Samuelson effect and volatility bumps. The occurrence of volatility bumps are explained

by the trading activity in the market for futures of specific maturities (delivery periods).

The spatial correlation structure of the noise is stationary with a fast-decaying pattern:

decreasing correlations with increased distance between maturity points along one curve.

Based on the empirical evidence, we further stylize our model and specify a spatio-

temporal mathematical formulation for the coloured noise time series. After explaining

the Samuelson effect in the volatility term structure, the residuals are modeled by a

NIG Lévy process with values in a convenient Hilbert space, which allows for a natural

formulation of a covariance functional. We model, in this way, the typical fat tails and

fast-decaying pattern of spatial correlations. We bring, thus, several contributions of our

modeling approach over Andresen, Koekebakker, and Westgaard (2010): we disentangle

the temporal from spatial (maturity) effects on the dynamics of forward prices, and shed

light on the statistical properties of risk premia, of the noise volatility term structure

and of the spatio-temporal noise correlation structures. In conclusion, we formulate an

arbitrage-free random field model for the forward price dynamics in power markets which

honours the statistical findings.

The idea of modeling power forward prices with a random field model goes back to

3Similar results can be found in Frestad, Benth, and Koekebakker (2010), who analyzed the distribution
of daily log returns of individual forward contracts at Nord Pool and found that the univariate NIG
distribution performed best in fitting the return data.
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Audet, Heiskanen, Keppo, and Vehviläinen (2004), who studied theoretically a Gaussian

model with certain mean-reversion characteristics. A mathematical treatise of the more

general random field models of HJM type as we propose in this paper can be found in

Benth and Krühner (2014). The issue of pricing derivatives for such random field models is

discussed in Benth and Krühner (2015), while Benth and Lempa (2014) analyse portfolio

strategies in energy markets with infinite dimensional noise. Our proposed forward price

dynamics is thus suitable for further applications to both derivatives pricing and risk

management. Efficient numerical approaches for simulation are also available, see Barth

and Benth (2014). Ambit fields is an alternative class of random fields which can be used

for dynamic modeling of forward prices in power markets, see Barndorff-Nielsen, Benth,

and Veraart (2014). In Barndorff-Nielsen, Benth, and Veraart (2015) and Benth and

Krühner (2015), infinite-dimensional cross-commodity forward price models are proposed

and analysed.

The rest of the paper is organized as follows: In section 2 we present the mathe-

matical formulation of the spatio-temporal random field model. In sections 3 and 4 we

describe the data used for the application and present descriptive statistics on the risk

premia, volatility, correlations and noise. The estimation results are shown in section 5,

and in section 6 we specify a mathematical model for the residuals based on the statistical

findings. Finally, section 7 concludes.

2 Spatio-temporal random field modeling of forward

prices

The Heath-Jarrow-Morton (HJM) approach (see Heath, Jarrow, and Morton (1992)) has

been advocated as an attractive modelling framework for energy and commodity for-

ward prices (see Benth, Šaltytė Benth, and Koekebakker (2008), Benth and Krühner

(2014)/(2015), Benth and Koekebakker (2008), Clewlow and Strickland (2000)). If Ft(T )
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denotes the forward price at time t ≥ 0 for delivery of a commodity at time T ≥ t, we

introduce the so-called Musiela parametrization x = T − t and let Gt(x) be the forward

price for a contract with time to maturity x ≥ 0. The graphical representation in Figure

2 shows comparatively the difference between thinking in terms of “time at maturity”, T ,

versus “time to maturity” x. Note that Gt(x) = Ft(t+ x). It is known that the stochas-

tic process t 7→ Gt(x), t ≥ 0 is the solution of a stochastic partial differential equation

(SPDE),

dGt(x) = (∂xGt(x) + β(t, x)) dt+ dWt(x) (1)

where ∂x = ∂/∂x is the differential operator with respect to time to maturity x, β is

a spatio-temporal process modelling the market price of risk and finally W is a spatio-

temporal random field which describes the randomly evolving residuals in the dynamics.

( , ) ( ),     

   
t

t T F T t T ( ),     

   
t

t G X

t

T x T t 

t

Figure 2: Theoretical model: time at maturity (first graph) versus time to maturity
(second graph).

To make the model for the forward price dynamicsG rigorous, it has to be formulated

as a stochastic process in time, taking values in a space of curves on the positive real
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line R+. Typically, this space of curves are endowed with a Hilbert space structure.

Denoting this Hilbert space of curves by H, the SPDE (1) is interpreted as a stochastic

differential equation in H. Moreover, the H-valued process Wt is a martingale, and

encodes a correlation structure in space and time for the forward prices, as well as the

distribution of price increments at fixed times of maturity x and the term structure of

volatility. The latter includes the Samuelson effect, which is predominant in commodity

markets where stationarity of prices is an empirical characteristic. We refer to Benth and

Krühner (2015) for a rigorous mathematical description and analysis of (1) in the Hilbert

space framework, where a specific example of an appropriate space of curves H suitable

for commodity markets is proposed.

In this paper we will analyse a discrete-time version of the process Gt, obtained

from an Euler discretization of (1). In particular, our focus will be on an analysis of the

seasonal structure, the market price of risk and finally the probabilistic features of the

noise component Wt. To this end, suppose that

Gt(x) = ft(x) + st(x) , (2)

where st(x) is a deterministic seasonality function. We assume that R2
+ 3 (t, x) 7→

st(x) ∈ R is a bounded and measurable function, typically being positive. Note that if we

construct the seasonality function from a spot price model, then naturally st(x) = s(t+x),

where s is the seasonality function of the commodity spot price (see Benth, Šaltytė Benth,

and Koekebakker (2008)). We furthermore assume that the deseasonalized forward price

curve, denoted by ft(x), has the dynamics

dft(x) = (∂xft(x) + θ(x)ft(x)) dt+ dWt(x) , (3)

with R+ 3 x 7→ θ(x) ∈ R is a bounded and measurable function modeling the risk
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premium. With this definition, we note that

dFt(x) = dft(x) + dst(x)

= (∂xft(x) + θ(x)ft(x)) dt+ ∂tst(x) dt+ dWt(x)

= (∂xFt(x) + (∂tst(x)− ∂xst(x)) + θ(x)(Ft(x)− st(x))) dt+ dWt(x) .

In the natural case, ∂tst(x) = ∂xst(x), and therefore we see that Ft(x) satisfy (1) with

β(t, x) := θ(x)ft(x), i.e., that the market price of risk is proportional to the deseasonalized

forward prices. Note that we have implicitly assumed differentiability of st(x) in the above

derivation.

Let us next discretize the dynamics of ft in (3), in order to obtain a time series

dynamics of the (deseasonalized) forward price curve. Let {x1, . . . , xN} be a set of

equidistant maturity dates with resolution ∆x := xi − xi−1 for i = 2, . . . , N . At time

t = ∆t, . . . ,M∆t, where M∆t = T for some terminal time T , we observe for each matu-

rity date x ∈ {x1, . . . , xN} a point on the price-forward curve Ft(x) and a corresponding

point on the seasonality curve st(x). A standard approximation of the derivative operator

∂x is

∂xft(x) ≈ ft(x+ ∆x)− ft(x)

∆x

Next, after doing an Euler discretization in time of (3), we obtain the time series approx-

imation for ft(x). With x ∈ {x1, . . . , xN} and t = ∆t, . . . , (M − 1)∆t,

ft+∆t(x) = (ft(x) +
∆t

∆x
(ft(x+ ∆x)− ft(x)) + θ(x)ft(x)∆t+ εt(x) (4)

where εt(x) := Wt+∆t(x) −Wt(x). We define the time series Zt(x) for x ∈ {x1, . . . , xN}

and t = ∆t, . . . , (M − 1)∆t,

Zt(x) := ft+∆t(x)− ft(x)− ∆t

∆x
(ft(x+ ∆x)− ft(x)) (5)
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which implies

Zt(x) = θ(x)ft(x)∆t+ εt(x) , (6)

where changes between the stochastic components of forward curves incorporate risk pre-

mia and changes in the noise. Since we are interested in analysing the properties of the

noise volatility, to account for Samuelson effect in forward prices, the model residuals

εt(x) are further decomposed in:

εt(x) = σ(x)ε̃t(x) (7)

where ε̃t(x) are the standardized residuals.

The time series model (6) will be our point of study in this paper, where we are

concerned with inference of the market price of risk proportionality factor θ(x) and the

probabilistic structure of ε̃t(x). As our case is power markets, we aim at a (time and

space) discrete curve Zt(x) from forward prices over a delivery period. How to recover

data for Z in such markets will be discussed in the next section. We remark here that we

will choose a procedure of constructing a seasonal function which provides information

on st(x) at discrete time and space points. By smooth interpolation, we may assume that

∂tst(x) = ∂xst(x).

3 Generation of Price Forward Curves: theoretical

background

In our empirical analysis we employed a unique data set of hourly price forward curves

(HPFC) Ft(x1), . . . , Ft(xN) generated each day between 01/01/2009 and 15/07/2015 based

on the latest information from the observed futures prices for the German electricity Phe-

lix price index. In this section we describe how these curves were produced from market

prices.
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3.1 Construction of the hourly price forward curves

For the derivation of the HPFCs we follow the approach introduced by Fleten and Lem-

ming (2003). At any given time the observed term structure at EEX is based only on

a limited number of traded futures/forward products. Hence, a theoretical hourly price

curve, representing forwards for individual hours, is very useful but must be constructed

using additional information. We model the hourly price curve by combining the infor-

mation contained in the observed bid and ask prices with information about the shape of

the seasonal variation.

Recall that Ft(x) is the price of the forward contract with maturity x, where time is

measured in hours, and let Ft(T1, T2) be the settlement price at time t of a forward contract

with delivery in the interval [T1, T2]. The forward prices of the derived curve should match

the observed settlement price of the traded future product for the corresponding delivery

period, that is:

1∑T2
τ=T1

exp(−rτ/a)

T2∑
τ=T1

exp(−rτ/a)Ft(τ − t) = Ft(T1, T2) (8)

where r is the continuously compounded rate for discounting per annum and a is the num-

ber of hours per year. A realistic price forward curve should capture information about

the hourly seasonality pattern of electricity prices. For the derivation of the seasonality

shape of electricity prices we follow Blöchlinger (2008) (chapter 6). Basically we fit the

HPFC to the seasonality shape by minimizing

min

[
N∑
x=1

(Ft(x)− st(x))2

]
(9)

subject to constraints of the type given in equation (8) for all observed instruments, where

st is the hourly seasonality curve (we refer to Fleten and Lemming (2003) for details).4

4In the original model, Fleten and Lemming (2003) applied, for daily time steps, a smoothing factor
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To keep the optimization problem feasible, overlapping contracts as well as contracts with

delivery periods which are completely overlapped by other contracts with shorter delivery

periods, are removed.

3.2 Seasonality shape

For the derivation of the shape st we follow the procedure discussed in Blöchlinger (2008),

see pp. 133–137, and in Paraschiv (2013). In a first step, we identify the seasonal structure

during a year with daily prices. In the second step, the patterns during a day are analyzed

using hourly prices. Let us define two factors, the factor-to-year (f2y) and the factor-to-

day (f2d) (following the notation in Blöchlinger (2008)). By f2y we denote the relative

weight of an average daily price compared to the annual base of the corresponding year:

f2yd =
Sday(d)∑

k∈year(d) S
day(k) 1

K(d)

(10)

Sday(d) is the daily spot price in the day d, which is the average price of the hourly

electricity prices in that day. K(d) denotes the number of days in the year when Sday(d)

is observed. The denominator is thus the annual base of the year in which S(d) is observed.

To explain the f2y, we use a multiple regression model (similar to Blöchlinger

(2008)):

f2yd = α0 +
6∑
i=1

biDdi +
12∑
i=1

ciMdi +
3∑
i=1

diCDDdi +
3∑
i=1

eiHDDdi + ε (11)

• f2yd: Factor to year, daily-base-price/yearly-base-price

• Ddi: 6 daily dummy variables (for Mo-Sat)

to prevent large jumps in the forward curve. However, in the case of hourly price forward curves,
Blöchlinger (2008) (p. 154) concludes that the higher the relative weight of the smoothing term, the
more the hourly structure disappears. We want that our HPFC reflects the hourly pattern of electricity
prices and therefore in this study we have set the smoothing term in Fleten and Lemming (2003) to 0.
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• Mdi: 12 monthly dummy variables (for Feb-Dec); August will be subdivided in two

parts, due to summer vacation

• CDDdi: Cooling degree days for 3 different German cities

• HDDdi: Heating degree days for 3 different German cities

where CDDi/HDDi are estimated based on the temperature in Berlin, Hannover and

Munich.

• Cooling Degree Days (CDD) = max(T − 18.3◦C, 0)

• Heating Degree Days (HDD)= max(18.3◦C − T, 0)

We transform the series f2yd from daily to hourly, by considering the same factor-to-year

f2yd for each hour t observed in the day d. In this way we construct hourly f2yt series,

which later enter the shape st. The f2d, in contrast, indicates the weight of the price of

a particular hour compared to the daily base price.

f2dt =
Shour(t)∑

k∈day(t) S
hour(k) 1

24

(12)

with Shour(t) being the hourly spot price at the hour t. We know that there are con-

siderable differences both in the daily profiles of workdays, Saturdays and Sundays, but

also between daily profiles during winter and summer season. Thus, following Blöchlinger

(2008) we suggest to classify the days by weekdays and seasons and to choose the classi-

fication scheme presented in Table 1. The workdays of each month are collected in one

class. Saturdays and Sundays are treated separately. In order to obtain still enough ob-

servations per class, the profiles for Saturday and Sunday are held constant during three

months.

The regression model for each class is built quite similarly to the one for the yearly

seasonality. For each profile class c = {1, . . . , 20} defined in Table 1, a model of the

12



Table 1: The table indicates the assignment of each day to one out of the twenty profile classes.
The daily pattern is held constant for the workdays Monday to Friday within a month, and for
Saturday and Sunday, respectively, within three months.

J F M A M J J A S O N D
Week day 1 2 3 4 5 6 7 8 9 10 11 12
Sat 13 13 14 14 14 15 15 15 16 16 16 13
Sun 17 17 18 18 18 19 19 19 20 20 20 17

following type is formulated:

f2dt = aco +
23∑
i=1

bciHt,i + εt for all t ∈ c. (13)

where Hi = {0, . . . , 23} represents dummy variables for the hours of one day.

The seasonality shape swt can be calculated by swt = f2yt · f2dt, and becomes the

the forecast of the relative hourly weights. It is additionally multiplied by the observed

futures prices, in order to align the shape at the prices level. This yields the seasonality

shape st which is finally used to deseasonalize the price forward curves, as shown in

Equation 2.

An alternative approach to extract power forward curves from a discrete set of

traded contract using spline interpolation is suggested by Benth, Koekebakker, and Ollmar

(2007). Recently, Caldana, Fusai, and Roncoroni (2016) proposed a method combining

non-parametric filtering with convex interpolation.

4 Empirical analysis

The original input to our analysis are 2’386 hourly price forward curves for PHELIX, the

German electricity index, generated each day between 01/01/2009 and 15/07/2015, for a

horizon of 5 years. The curves have been provided by the Institute of Operations Research

and Computational Finance, University of St. Gallen. In a first step, we eliminated the
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deterministic component of the hourly price forward curves, as shown in Equation (2). To

keep the analysis tractable, we chose to work with daily, instead of hourly curves. Thus,

the stochastic component of each hourly price forward curve, ft(x), has been filtered out

for hour 12 of each day over a horizon of 2 years.5 The choice of hour 12 is intuitive,

since it has been empirically shown that over noon electricity prices are more volatile,

due to the increase in the infeed from renewable energies over the last years in Germany

(Paraschiv, Erni, and Pietsch (2014)). It is interesting, therefore, to analyse the volatility

of the noise εt(x) (Equation (6)) for this particular trading period.

In this section, we analyse the stochastic component of price forward curves and

examine further the market price of risk, the distribution of the noise volatility and its

spatio-temporal correlations structures.

4.1 Analysis of the stochastic component of Price Forward Curves

In Table 2 we show the evolution of production sources for electricity generation in Ger-

many between 2009–2014 in yearly percent averages. We observe that between 2010 and

2011 there has been an increase of 30% in the wind infeed, while the solar production

source almost doubled. Between 2011–2014 the infeed from wind and photovoltaic in-

creased further, however in smaller steps. The increase of renewable energies in electricity

production poses a particular challenge for power generators, since both wind and solar

energies are difficult to forecast. Thus, market players must balance out forecasting errors

in their power production, which increases the trading activity in the market (as shown in

Kiesel and Paraschiv (2015)). Due to high forecasting errors in renewables, it is more dif-

ficult to plan accurately the required traditional capacity to cover the forecasted demand

for the day-ahead. Demand/supply disequilibria are therefore expected to occur and, in

consequence, extremely large price changes, so-called spikes, are observed. Given that

5For the generation of PFCs on horizons longer than 2 years, only yearly futures are still observed, so
the information about the market expectation becomes more general. We therefore decided to keep the
analysis compact and analyse 2 years long truncated curves.
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the electricity production in Germany is to a large extent coal based, and that ramping

up/down coal power plants can be done only at high costs, shocks in supply of electricity

are usually difficult to be balanced out, and thus spikes can occur in clusters, leading to

an increased volatility of electricity prices.

While there is empirical evidence for the direct impact of wind and photovoltaic

on electricity spot prices (Paraschiv, Erni, and Pietsch (2014)), we investigated further

whether the higher volatile infeed from renewable energies, which substituted traditional

plants in production, is also reflected in the market expectation of futures prices. In

Figures 12–13 we display the pattern of the stochastic component of price forward curves

(ft(x), as shown in Equation (2)) generated at 1st February each year between 2010–

2014. We observe that the volatility of the stochastic component is increasing significantly

between 2010–2011 and decreases between 2012–2013. The increased volatility of the

stochastic component of curves between 2010–2011 can be interpreted as a consequence

of the sustainable increase in the infeed from renewable energies, wind and photovoltaic,

between these two consecutive years, supported and planned by the energy policy makers

in Germany (see Paraschiv, Erni, and Pietsch (2014)).

More renewables in the market lead to more uncertainty around the market expec-

tation of electricity prices and thus, to more volatile futures prices. However, after 2012

the infeed from renewables increased by lower percentages, so the lower volatility in the

stochastic component of PFCs show an adaption process: Market participants have a bet-

ter ease and certainty of valuation and a better understanding of the role of renewables

for electricity production.

4.2 Analysis of the risk premium

In the case of storable commodities, arbitrage-based arguments imply that forward prices

are equal to (discounted) expected spot prices. However, electricity is non-storable, so

this link does not exist here. Therefore, it can be expected that forward prices are formed
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2009 2010 2011 2012 2013 2014

Coal 42.6 41.5 42.8 44 45.2 43.2
Nuclear 22.6 22.2 17.6 15.8 15.4 15.8
Natural Gas 13.6 14.1 14 12.1 10.5 9.5
Oil 1.7 1.4 1.2 1.2 1 1
Renewable energies from which 15.9 16.6 20.2 22.8 23.9 25.9

Wind 6.5 6 8 8.1 8.4 8.9
Hydro power 3.2 3.3 2.9 3.5 3.2 3.3
Biomass 4.4 4.7 5.3 6.3 6.7 7.0
Photovoltaic 1.1 1.8 3.2 4.2 4.7 5.7
Waste-to-energy 0.7 0.7 0.8 0.8 0.8 1

Other 3.6 4.2 4.2 4.1 4 4.3

Table 2: Electricity production in Germany by source (%), as shown in Paraschiv, Erni,
and Pietsch (2014).

as the sum of the expected spot price plus a risk premium that is paid by risk-averse

market participants for the elimination of price risk. We estimated Equation (6) for each

time-series Zt(x) and ft(x), t ∈ {1, . . . , T} of each point x ∈ {x1, . . . , xN}. For taking

∆t = 1day and ∆x = 1day, the estimated risk premia will be a (1 × (N − 1)) vector.

Estimation results are shown in Figure 3.

We observe that the risk premia take values between a minimum of −0.086 and

maximum 0.017. They oscillate around zero and have a higher volatility over the first

three quarters of the year along the curve, so for shorter time to maturities. However,

on the medium/long-run the risk premia are predominantly negative and the volatility

becomes more constant for the second year.

The finding that the short-term risk premia oscillate around zero is consistent with

the findings in the literature. For example Pietz (2009) found that the risk premium

may be positive or negative, depending on the average risk aversion in the market. It

may vary in magnitude and sign throughout the day and between seasons. Furthermore,

Paraschiv, Fleten, and Schürle (2015) found that short-term risk premia are positive

during the week and decrease or become negative for the weekend. The disentangled

pattern of risk premia between seasons, working/weekend days cannot be investigated

16



here directly, though, since we used for the estimation a time-series of each point along

one curve, making use of all generated PFCs used as input. We are in fact interested

to examine the evolution of risk premia with increasing time to maturity. In the long-

run, the negative risk premia confirm previous findings in the literature (see e.g.,Burger,

Graeber, and Schindlmayr (2007)): producers accept lower futures prices, as they need

to make sure that their investment costs are covered.
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Figure 3: Risk premia along one curve (2-year length, daily resolution)
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4.3 Analysis of term structure volatility

In Figure 4 we plot the term structure volatility σ(x), for x ∈ {x1, . . . , xN}, as defined

in Equation 7. Overall we observe that the volatility decreases with increasing time to

maturity. In particular, it decays faster for shorter time to maturity and it shows a bump

around the maturity of 1 month. Around the second (front) quarter the volatility starts

increasing again, showing a second bump around the third quarter. The reason is that

for time to maturities longer than one month, in most of the cases weekly futures are

not available anymore, so the next shortest maturity available in the market is the front

month future. That means: if market participants are interested in one sub-delivery

period within the second month, there are no weekly futures available to properly price

their contracts, but the only available information is from the front month future price. It

is known that the volume of trades for this front month future increases, thus inducing a

higher volatility of the corresponding forward prices. In Figure 5 we observe that indeed,

the front month future has the highest and the most volatile volume of trades over the

investigated time period, compared to the other monthly traded contracts. A similar

effect is around the front quarter, when monthly futures are not observed anymore, but

the information about the level of the (expected) price is given by the corresponding

quarterly future contract. In consequence, the volume of trades for the front quarterly

future and for the 2nd available quarterly future increases, these being the most traded

products in the market, as shown in Figure 6. This explains the increase in the volatility

during the front quarter segment of the forward curve and the second bump.

The jigsaw pattern of the volatility curve reflects the weekend effect: the volatility

of forwards is lower during weekend versus working days. A similar pattern is observed

in the spot price evolution, as shown in Paraschiv, Fleten, and Schürle (2015).
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Figure 4: The empirical volatility term structure

4.4 Statistical properties of the noise time series

The analysis of the noise time-series ε̃t (see Equation (7)) is twofold: First, we examine

the statistical properties of individual time series ε̃t(xi) and in particular we check for

stationarity, autocorrelation and ARCH/GARCH effects. Secondly, we examine patterns

in the correlation matrix with respect to the time/maturity dimensions. Thus, we are

interested in the correlations between ε̃t(xi) and ε̃t(xj), for i, j ∈ {1, . . . , N}, t = 1, . . . , T

to examine the effect of the time to maturity on the joint dynamics between the noise

components. Furthermore we are interested in the correlations between noise curves,

with respect to the points in time where these have been generated: correlations be-

tween ε̃m(x1), . . . , ε̃m(xN) and ε̃n(x1), . . . , ε̃n(xN), for m,n ∈ {1, . . . , T}. The analysis is
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Figure 5: The sum of traded contracts for the monthly futures at EPEX (own calculations,
source of data: ems.eex.com).
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Figure 6: The sum of traded contracts for the quarterly futures at EPEX (own calcula-
tions, source of data: ems.eex.com).
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performed initially for taking ∆x = 1day and ∆t = 1day, as defined in Equation (5).

We are further interested to see whether the statistical properties of the noise as

well as the correlations between its components change, if we vary the maturity step ∆x

in Equation (5) (and implicitly ∆t). We believe that various maturity steps will lead to

slightly different properties of the noise, given the stepwise pattern of the deaseasonalized

price forward curves ft(x), as shown in Figures 12 and 13. The stepwise pattern comes

from the different level of futures prices of different maturities taken as input for the gen-

eration of price forward curves. Futures have different delivery periods, weekly, monthly,

quarterly, yearly, and at each point when a new future is observed, the level changes. This

pattern is taken over in the stochastic component ft(x). Furthermore, within one week,

we observe the weekend effect: the price level is different between working/weekend days.

All these cause sparse matrices in the noise, given the many values of “zero” obtained

after differentiating.

To assess the impact of stepwise changes in the stochastic component of price for-

ward curves ft(x), we replicated the analysis for one additional case study: We further

investigated the effect of a change between consecutive weekly futures prices by taking

∆x = 7days. This maturity step accounts further for the impact of a change in the level of

the curve when monthly/quarterly products become available (or mature, being replaced

by new ones in the market).

4.4.1 Stationarity, Autocorrelation, ARCH/GARCH effects

The stationarity, autocorrelation pattern and ARCH/GARCH effects are computed for

each case study of ∆x/∆t, namely 1 day and 7 days shifts in maturity (and time). To

reduce the complexity, we compute these statistics for time series of equidistant points

along the curve’s length: ε̃t(xk), where k ∈ {1, . . . , N}. In choosing k we increment over

90 days (approximately one quarter) along one noise curve. To test for stationarity, we

applied the Augmented Dickey-Fuller (ADF) and Phillips-Perron tests for a unit root in

21



each univariate time series ε̃t(xk). Results are confirmed when applying the Kwiatkowski-

Phillips-Schmidt-Shin test statistic for stationarity (with intercept, no trend).6 Results are

available in Tables 3 and 4 for the case studies ∆x = 1day and ∆x = 7days, respectively.

For h = 0, we fail to reject the null that series are stationary. Thus, all statistical tests

conclude that time series ε̃t(xk) are stationary.

We further tested the hypothesis that the ε̃t(xk) series are autocorrelated. Autocor-

relation test results are shown in Tables 3 and 4. We replicated the test for the level of

the noise time series and for their squared values (columns 2 an 3, respectively). h1 = 0

indicates that there is not enough evidence to suggest that noise time series are autocor-

related. In Figures 7 and 8 we display the autocorrelation function for series ε̃t(xk) for

k ∈ 90, 180, 270, 360, for the level and squared residuals, respectively. In the first case,

the pattern of the autocorrelation function for the level of residuals shows a typical white

noise pattern. Still, as expected, the autocorrelation function shows a slight decaying

pattern in the second case, when we look the the squared residuals 8. The decaying pat-

tern becomes more obvious when we move to the case study two, where the change in

maturity (and time) is set to 7 days, as shown in Figure 9. This is not surprising, since

an increment of maturity points and time of 7 days leads to less zero increments in the

noise time series overall, which allows a more visible pattern of autocorrelation. Results

of the autocorrelation test conclude our findings from the visual inspection: if in the basic

case study of ∆x = 1day we did not find evidence for autocorrelation in all time series of

the noise (Table 3, second and third columns), there is clear evidence for autocorrelation

in all series with increasing maturity step ∆x = 7days.

We further tested the hypothesis that there are significant ARCH effects in the

ε̃t(xk) series by employing the Ljung-Box Q-Test. Results are shown in the last columns

of Tables 3 and 4. h2 = 1 indicates that there are significant ARCH effects in the noise

time-series. Independent of the maturity/time step chosen, time series are characterized

6see Appendix 8.1 for the detailed test statistics.
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by ARCH effects, and thus by a volatility clustering pattern. In Equation 7 we filter

the volatility out of the marginal noise εt(x). However, the volatility is not time-varying

in our model, which explains that there is a (slight) evidence for remaining stochastic

volatility (conditional heteroschedasticity) in the standardized residuals ε̃t(x).

In the light of the identified ARCH/GARCH effects in the marginals ε̃t(xk), we

inspect their tail behavior by plotting the kernel smoothed empirical densities versus

normal distribution for series k ∈ 1, 90, 180, 270, as shown in Figure 11. We observe the

strong leptokurtic pattern of heavy tailed marginals.

Overall we conclude that the model residuals are coloured noise, with heavy tails

(leptokurtic distribution) and with a tendency for conditional volatility.

ε̃t(xk) Stationarity Autocorrelation ε̃t(xk) Autocorrelation ε̃t(xk)
2 ARCH/GARCH

h h1 h1 h2

Q0 0 1 1 1
Q1 0 0 0 0
Q2 0 1 1 1
Q3 0 0 1 1
Q4 0 1 0 0
Q5 0 1 1 1
Q6 0 1 1 1
Q7 0 1 1 1

Table 3: The time series are selected by quarterly increments (90 days) along the maturity
points on one noise curve. Hypotheses tests results, case study 1: ∆x = 1day. In
column ’Stationarity’, if h = 0 we fail to reject the null that series are stationary. For
’Autocorrelation’, h1 = 0 indicates that there is not enough evidence to suggest that
noise time series are autocorrelated. In the last column, h2 = 1 indicates that there are
significant ARCH effects in the noise time-series.

4.4.2 Spatial Correlation

In the autocorrelation functions examined above, we show that there are temporal corre-

lations between forward curves produced at different points in time. In addition, we are

interested in the spatial correlation structure between ε̃t(xi) and ε̃t(xj), for i, j ∈ 1, ..., N ,

to examine how noise correlations change with increasing distance between the matu-
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ε̃t(xk) Stationarity Autocorrelation ε̃t(xk) Autocorrelation ε̃t(xk)
2 ARCH/GARCH

h h1 h1 h2

Q0 0 1 1 1
Q1 0 1 1 1
Q2 0 1 1 1
Q3 0 1 1 1
Q4 0 1 1 1
Q5 0 1 1 1
Q6 0 1 1 1
Q7 0 1 1 1

Table 4: The time series are selected by quarterly increments (90 days) along the maturity
points on one noise curve. Hypotheses tests results, case study 2: ∆x = 7days. In
column ’Stationarity’, if h = 0 we fail to reject the null that series are stationary. For
’Autocorrelation’, h1 = 0 indicates that there is not enough evidence to suggest that
noise time series are autocorrelated. In the last column, h2 = 1 indicates that there are
significant ARCH effects in the noise time-series.

rity points along one curve. In Figure 10 we observe that correlations oscillate between

positive and negative, which is expected, given the nature of the (coloured) noise time

series (stationary, oscillating around 0). As expected, spatial correlations between matu-

rity points of up to 1 month (about 30 day) decay fast with increasing distance between

them. This reflects the higher interest of market participants for maturing contracts. The

correlations between maturity points situated at distances longer than 30 days are very

low, oscillating around zero. However, correlations between 1 year distant maturity points

slightly increase. This shows that the stochastic component of forward prices is driven by

common factors at the same time of the year, which is reflected in a higher correlation

between yearly futures products.

5 Modeling approach and estimation of the noise

Given the heavy tails of marginals identified in Figure 11, we model the noise marginals

ε̃t(x) by a Normal Inverse Gaussian distribution (NIG). The NIG distribution is a special

case of the Generalized Hyperbolic Distribution for λ = −1/2 and its density reads (see
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Figure 7: Autocorrelation function in the level of the noise time series ε̃t(xk), by taking
k ∈ {1, 90, 180, 270}, case study 1: ∆x = 1day.

Benth, Šaltytė Benth, and Koekebakker (2008)):

fNIG(x) =
α

π
exp(δ

√
α2 − β2 + β(x− µ))

K1(αδ
√

1 + (x−µ
δ

)2)√
1 + (x−µ

δ
)2

(14)

We have firstly fitted a NIG by moment estimators. We observed that the fitted

density performs visibly better than a normal distribution in explaining the leptokurtic

pattern of time series. In a second step, we estimated NIG by maximum likelihood (ML).
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Figure 8: Autocorrelation function in the squared time series of the noise ε̃t(xk)
2, by

taking k ∈ {1, 90, 180, 270}, case study 1: ∆x = 1day.

The mathematical formulation of the likelihood function and related gradients as input

to the numerical optimization procedure are given in Appendix 8.2.

The ML estimates improved further the fit of the NIG density. In Table 5 we show

the ML estimates for the NIG distribution fitted to ε̃t(xk) by taking k ∈ {1, 90, 180, 270}.

In Figure 11 we show the kernel density estimates versus normal and the two versions

of the NIG estimation. We confirm a realistic performance of the NIG distribution in

explaining the heavy tail behavior of noise marginals.
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Figure 9: Autocorrelation function in the squared time series of the noise ε̃t(xk)
2, by

taking k ∈ {1, 90, 180, 270}, case study 2: ∆x = 7days.

Parameter Q0 Q1 Q2 Q3

δ 1.115 0.252 0.193 0.226
(0.102) (0.007) (0.005) (0.006)

α 1.083 0.188 0.116 0.195
(0.152) (0.046) (0.052) (0.037)

β 0.111 -0.012 0.000 -0.001
(0.054) (0.024) (0.022) (0.021)

µ -0.011 0.000 -0.004 -0.002
(0.049) (0.004) (0.007) (0.007)

Table 5: Maximum likelihood estimates of NIG to ε̃t(xk) by taking k ∈ {1, 90, 180, 270}
for Q0,...,Q3, respectively.
Standard errors are shown in parentheses.
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Figure 10: Correlation matrix with respect to different maturity points

6 Revisiting the spatio-temporal model of forward

prices

In our empirical analysis of EPEX electricity forward prices, we have made use of a time

series discretization of the deseasonalized term structure dynamics ft(x) defined in (3).

We have estimated the parameter of the market price of risk θ(x), and have analysed

empirically the noise residual dWt(x) expressed as εt(x) = σ(x)ε̃t(x) in a discrete form

in (7). The purpose of this Section is to recover an infinite dimensional model for Wt(x)

based on our findings.
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To this end, we recall that H is a separable Hilbert space of real-valued function on

R+, where Wt is a martingale process. As suggested by the notation, a first model could

simply be to assume that W is a H-valued Wiener process. However, this would mean

that we expect t 7→ Wt(x) to be a Gaussian process for each x ≥ 0, which is at stake

with our empirical findings showing clear non-Gaussian (or, coloured noise) residuals.

After explaining the Samuelson effect, the residuals could be modelled nicely by a NIG

distribution.

A potential model of W could be

Wt =

∫ t

0

Σs dLs , (15)

where s 7→ Σs is an L(U ,H)-valued predictable process and L is a U -valued Lévy process

with zero mean and finite variance. We refer to (Peszat and Zabczyk, 2007, Sect. 8.6)

for conditions to make the stochastic integral well-defined. As a first case, we can choose

Σs ≡ Ψ time-independent, being an operator mapping elements of the separable Hilbert

space U into H. An increment in Wt can be approximated (based on the definition of the

stochastic integral, see (Peszat and Zabczyk, 2007, Ch. 8)) as

Wt+∆t −Wt ≈ Ψ(Lt+∆t − Lt) (16)

Choose now U = L2(R), the space of square integrable functions on the real line equipped

with the Lebesgue measure, and assume Ψ is an integral operator on L2(R), i.e., for

g ∈ L2(R), the mapping

R+ 3 x 7→ Ψ(g)(x) =

∫
R
σ̃(x, y)g(y) dy (17)

defines an element in H. Furthermore, if supp σ̃(x, ·) is concentrated in a close neighbor-

hood of x, we can further make the approximation Ψ(g)(x) ≈ σ̃(x, x)g(x). As a result,
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we find

Wt+∆t(x)−Wt(x) ≈ σ̃(x, x)(Lt+∆t(x)− Lt(x)) . (18)

In view of the definition of εt(x) in (7), we can choose σ(x) = σ̃(x, x) to be the model for

the Samuelson effect that we identified and discussed in Subsect. 4.3, and we let Lt be a

NIG Lévy process with values in L2(R) to model the standardized residuals ε̃t (see Benth

and Krühner (2015) for a definition of such a process).

Recall from Fig. 10 the spatial correlation structure of ε̃t(x). This provides the

empirical foundation for defining a covariance functional Q associated with the Lévy

process L. In general, we know that for any g, h ∈ L2(R),

E[(Lt, g)2(Lt, h)2] = (Qg, h)2

where (·, ·)2 denotes the inner product in L2(R) (see (Peszat and Zabczyk, 2007, Thm. 4.44)).

The covariance functional will be a symmetric, positive definite trace class operator from

L2(R) into itself. It can be specified as an integral operator on L2(R) by

Qg(x) =

∫
R
q(x, y)g(y) dy , (19)

for some suitable “kernel-function” q. If q is symmetric, positive definite and continuous

function, then it follows from Thm. A.8 in Peszat and Zabczyk (2007) that Q is a covari-

ance operator of L if we restrict ourselves to L2(O), where O is a bounded and closed

subset of R. Indeed, we can think of O as the maximal horizon of the market, in terms

of relevant times to maturity (recall that we have truncated the forward curves in our

empirical study to a horizon of 2 years).

If we assume g ∈ L2(R) to be close to δx, the Dirac δ-function, and likewise, h ∈

L2(R) being close to δy, (x, y) ∈ R2, we find approximately

E[Lt(x)Lt(y)] = q(x, y)
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From the spatial correlation study of ε̃t, we observe that the correlation is stationary in

space in the sense that it only depends on the distance |x− y|. Hence, with a slight abuse

of notation, we let q(x, y) = q(|x − y|). A simple choice resembling to some degree the

fast decaying property in Fig. 10 is q(|x− y|) = exp(−γ|x− y|) for a constant γ > 0. We

further note that from Benth and Krühner (2015), it follows that t 7→ (Lt, g)2 is a NIG

Lévy process on the real line. If g ≈ δx, then we see that Lt(x) for given x is a real-valued

NIG Lévy process. With these considerations, we have established a possible model for

W which is, at least approximately, consistent with our empirical findings for εt.

Let us briefly discuss why we suggest to use U = L2(R) and introduce a rather

complex integral operator definition of Ψ. As mentioned in Sect. 2, the Hilbert space H

to realize the deseasonalized forward price dynamics ft should be a function space on R+.

L2(R) is a space of equivalence classes, and the evaluation operator δx(g) = g(x) is not

a continuous linear operator on this space. A natural Hilbert space where indeed δx is

a linear functional (e.g., continuous linear operator from the Hilbert space to R) is the

so-called Filipovic space. The Filipovic space was introduced and studied in the context

of interest rate markets by Filipovic (2001), while Benth and Krühner (2014, 2015) have

proposed this as a suitable space for energy forward curves. From Benth and Krühner

(2014) we have a characterization of the possible covariance operators of Lévy processes

in the Filipovic space, which, for example, cannot be stationary in the form suggested for

q above. Using U = L2(R) opens for a much more flexible specification of the covariance

operator, which matches nicely the empirical findings on our electricity data. On the

other hand, we need to bring the noise L over to the Filipovic space, since we wish to

have dynamics of the term structure in a Hilbert space for which we can evaluate the

curve at a point x ≥ 0, that is, δx(ft) = ft(x) makes sense. We recover the actual forward

price dynamics t 7→ F (t, T ) in this case by

F (t, T ) = f(t, T − t) = δT−t(ft) .
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We remark that for elements f in the Filipovic space, x 7→ f(x) will be continuous, and

weakly differentiable. To specify Ψ as an integral operator on L2(R), we can bring any

element of L2(R) to a smooth function. Indeed, the convolution product of a square

integrable function with a smooth function will yield a smooth function (see (Folland,

1984, Prop. 8.10)). This enables us to select ”volatility” functions σ̃ ensuring that Wt

becomes an element of the Filipovic space. Unfortunately, a simple multiplication operator

Ψ(g)(x) = σ(x)g(x) will not do the job, as this will not be an element of the Filipovic

space for general g ∈ L2(R). In conclusion, with H being the Filipovic space, we choose a

different space for the noise L to open up for flexibility in modelling the spatial correlation,

and an integral operator for Ψ to ensure that we map the noise into the Filipovic space,

at the same time modeling the Samuelson effect.

To follow up on the integral operator, we know the function σ̃(x, y) on the diagonal

x = y, since here we want to match with the observed curve for the Samuelson effect. In

a neighborhood around x, we smoothly interpolate to zero such that σ̃(x, ·) has a support

close to {x}, and such that the function defines an integral operator being sufficiently

regular. One possibility is to define σ̃(x, y) = η(x)σ̄(|x − y|), where σ̄ : R+ → R+ is

smooth, σ̄(0) = 1, and supp σ̄ is the interval (−a, a) for a small. With this definition, we

have that η models the Samuelson effect, the operator Ψ is a convolution product with σ̄,

followed by a multiplication with η. With η being an element of the Filipovic space, we

have specified Ψ as desired. By inspection of the curve for the volatility term structure

in Figure 4, a first-order approximation of it could be a function η(x) = a exp(−ζt) + b,

for constants a, ζ and b, where b > 0 is the long-term level and ζ > 0 measures the

exponential decay in the short end. We note that η(0) = a+ b will be the spot volatility.

With such a specification, η will be an element of the Filipovic space since it is smooth and

asymptotically constant. As we see, this simple model fails to account for the pronounced

bumps in the curve that we have discussed earlier. By a more sophisticated model, one

can take these into account as well.
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Our empirical analysis also show indications of stochastic volatility effects. We will

not discuss possible GARCH/ARCH specifications in continuous time, but briefly just

mention that we can choose Σs = VsΨ, where s 7→ Vs is a R+-valued stochastic process.

For example, we can define V to be the Heston stochastic volatility dynamics (see Hes-

ton (1993)) or the BNS stochastic volatility model (see Barndorff-Nielsen and Shephard

(2001)). In this case, it would be natural to suppose L to be a Wiener process in L2(R),

since the additional stochastic volatility process V will induce non-Gaussian distributed

residuals. We leave the further discussion on stochastic volatility models in infinite di-

mensional term structure models for future research (see however, Benth, Rüdiger, and

Süss (2015) for a Hilbert-valued Ornstein-Uhlenbeck processes with stochastic volatility).

7 Conclusion and future work

In this study, we derived a spatio-temporal dynamical model based on the Heath-Jarrow-

Morton (HJM) approach under the Musiela parametrization (see Heath, Jarrow, and

Morton (1992)), which ensures an arbitrage-free model for electricity forward prices. A

discretized version of the model has been fitted to electricity forward prices to examine

the probabilistic characteristics of the data. We disentangled the seasonal pattern from

the market price of risk and random perturbations of prices and analysed empirically their

statistical properties.

As a special feature of our model, we further disentangled the temporal from spatial

(time to maturity) effects on the dynamics of forward prices, which marks one of the main

contributions of this study to the academic literature (see Andresen, Koekebakker, and

Westgaard (2010)). After filtering out both temporal and spatial effects of price forward

curves and the market price of risk, we estimated the term structure volatility. Finally, our

model residuals show a white-noise pattern, which validates our modeling assumptions.

The model has been fitted to a unique data set of historical daily PFCs for the
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German electricity market. We firstly performed a deseasonalization of the initial curves,

where the seasonal component takes into account typical deterministic dynamics observed

in the German electricity prices (see Blöchlinger (2008), Paraschiv (2013)). We further

estimated the risk premia in the deseasonalized curves (stochastic component) and ex-

amined, in this context, the distribution of the noise: term structure volatility and its

spatio-temporal correlations structures. Our results show that the short-term risk pre-

mia oscillate around zero, but become negative in the long run, which is consistent with

the empirical literature (Paraschiv, Fleten, and Schürle (2015), Burger, Graeber, and

Schindlmayr (2007)). We found that the noise marginals are coloured-noise with a strong

leptokurtic pattern and heavy-tails, which have been successfully modeled by a normal

inverse Gaussian distribution (NIG). There were signs of stochastic volatility effects as

well. The high performance of the NIG distribution in modeling the noise marginals of

forward electricity prices confirms previous findings of Frestad, Benth, and Koekebakker

(2010). The term structure of volatility decays overall with increasing time to maturity,

a typical Samuelson effect. However, the term structure of volatility in our data set has

additionally clear bumps around the maturity of 1 month and third quarter, both being

related to an increased activity in the market for the corresponding futures contracts.

Our analysis also detects a fast decaying pattern in the spatial correlations as a function

of distance between times to maturity.

Our empirical findings mark an additional contribution over existing related lit-

erature Andresen, Koekebakker, and Westgaard (2010): we shed light on the statistical

properties of risk premia, of the noise, volatility term structure and of the spatio-temporal

noise correlation structures. Notably, we look at price residuals where the maturity effect

is corrected for, unlike the approach of Andresen, Koekebakker, and Westgaard (2010).

Based on the empirical insights, we revisited the spatio-temporal model of forward

prices and derived a mathematical model for the noise. After explaining the Samuelson

effect in the volatility term structure, the residuals are modeled by an infinite dimensional
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NIG Lévy process, which allows for a natural formulation of a covariance functional. We

model, in this way, the typical fat tails and fast-decaying pattern of spatial correlations.

Still, our empirical findings show some slight remaining volatility clustering effects in

the standardized residuals, which can be described by a stochastic volatility model for-

mulation. However, we will discuss and develop stochastic volatility models in infinite

dimensional term structure models in future research.

8 Appendix

8.1 Tests for unit roots

Tests for unit roots in the εt(xk) series, for k ∈ {7, 8, 9, 10}.

Test Null hypothesis Q0 Q1 Q3 Q4
ADF test Unit root -4.476* -4.701* -3.504* -3.600*

PP test Unit root -52.550* -51.755* -52.623* -52.720*
KPSS test Stationarity 0.564 0.399 0.329 0.367

Table 6: Unit root test results for series εt(xk) for quarterly increments in k ∈ 1, 90, 180, 270.
Note: One star denotes significance at the 1% level. ADF refers to Augmented Dickey-Fuller
test, PP to the Philips-Peron test and KPSS to the Kwiatkowski-Phillips-Schmidt-Shin test. The
lag structure of the ADF test is selected automatically on the basis of the Bayesian Information
Criterion (BIC). For PP and KPSS tests the bandwidth parameter is selected according to the
approach suggested by Newey and West (1994).

8.2 Maximum likelihood for NIG

In the mathematical formulation below, λ = 1
2
:
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L(α, β, δ, µ|ε1(x), ..., εT (x)) =T log a(λ, α, β, δ) +

(
λ

2
− 1

4

) T∑
i=1

log
(
δ2 + (εi(x)− µ)2

)
+

T∑
i=1

[
logKλ− 1

2

(
α
√
δ2 + (εi(x)− µ)2

)
+ β(εi(x)− µ)

]
(20)

where Kλ− 1
2

is the modified Bessel function of third kind (see Benth, Šaltytė Benth, and

Koekebakker (2008)) and

a(λ, α, β, δ) =
(α2 − β2)λ/2

√
2παλ−

1
2 δλKλ

(
δ
√
α2 − β2

) (21)

The derivatives of the likelihood function are,

∂L(α, β, δ, µ|ε1(x), ..., εT (x))

∂α
=T

δα√
α2 − β2

Rλ

(
δ
√
α2 − β2

)
−

T∑
i=1

√
δ2 + (εi(x)− µ)2Rλ− 1

2
(a) (22)

∂L(α, β, δ, µ|ε1(x), ..., εT (x))

∂β
=T

(
− δβ√

α2 − β2
Rλ

(
δ
√
α2 − β2

)
− µ

)
+

T∑
i=1

εi(x) (23)

∂L(α, β, δ, µ|ε1(x), ..., εT (x))

∂δ
=T

(
−λ
δ

+
1

2

√
α2 − β2

(
R−λ

(
δ
√
α2 − β2

)
+Rλ

(
δ
√
α2 − β2

)))
+

1

2

T∑
i=1

(
(2λ− 1) δ

δ2 + (εi(x)− µ)2

− αδ√
δ2 + (εi(x)− µ)2

(
R−λ+ 1

2
(a) +Rλ− 1

2
(a)
))

(24)

∂L(α, β, δ, µ|ε1(x), ..., εT (x))

∂µ
=− Tβ +

T∑
i=1

(
−
(
λ− 1

2

)
(εi(x)− µ)

δ2 + (εi(x)− µ)2

+
1
2
α(εi(x)− µ)√

δ2 + (εi(x)− µ)2

(
R−λ+ 1

2
(a) +Rλ− 1

2
(a)
))

(25)
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where Rλ(x) := Kλ+1(x)

Kλ(x)
, x > 0.
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Figure 12: Stochastic component of price forward curves (Equation (2)) generated at
01/02/2010 (above) and 01/02/2011 (below)
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Figure 13: Stochastic component of price forward curves (Equation (2)) generated at
01/02/2012 (above) and 01/02/2013 (below)

44


	16_11
	BenthParaschiv2016.pdf

