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ABSTRACT 

This paper develops a portfolio allocation framework to study the benefits of style integration 
and to compare the effectiveness of alternative integration methods in commodity futures 
markets. The framework is flexible enough to be applicable to any asset class for either long-
short, long- or short-only styles. We study the naïve equally-weighted integration and 
sophisticated integrations where the style exposures are estimated by utility maximization, style 
rotation, volatility-timing, cross-sectional pricing or principal components methods. 
Considering a “universe” of eleven long-short commodity styles, we demonstrate that the naïve 
integration improves the reward-to-risk tradeoff and crash risk profile of each individual style. 
While also achieving multiple-style exposures, the sophisticated integrations are unable to 
challenge the equally-weighted integration because this naïve approach circumvents estimation 
risk and perfect-foresight bias. The findings hold after trading costs, various reformulations of 
the sophisticated integrations, economic sub-period analyses and data snooping tests inter alia. 
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1. Introduction 

The commodity futures pricing literature has established that trading on the phases of 

backwardation and contango captures a sustainable return in excess of the risk-free rate, known 

as a commodity risk premium. Since backwardation (contango) signals a likely rise (fall) in 

futures prices, typical investment strategies or “styles” buy backwardated commodities – 

identified as those with low inventories (Fama and French, 1987; Symeonidis et al., 2012; 

Gorton et al., 2012), downward sloping forward curves (Erb and Harvey, 2006; Gorton and 

Rouwenhorst, 2006; Szymanowska et al., 2014; Koijen et al., 2017), good past performance 

(Erb and Harvey, 2006; Miffre and Rallis, 2007; Asness et al., 2013), net short hedging and net 

long speculation (Bessembinder, 1992; Basu and Miffre, 2013; Dewally et al., 2013) – and short 

contangoed commodities identified as those with opposite values for the above signals. Recent 

studies have shown that long-short style portfolios based on liquidity, open interest, inflation 

beta, dollar beta, value, volatility or skewness signals can also capture a premium (Hong and 

Yogo, 2012; Asness et al., 2013; Szymanowska et al., 2014; Fernandez-Perez et al., 2018).  

Instead of putting all the eggs in the same basket (i.e., adopting one of the commodity 

investment styles mentioned above), the present paper is concerned with the idea of forming a 

long-short commodity portfolio that has exposure to many styles. Style integration has a strong 

economic appeal. By relying on a composite variable that aggregates information from various 

signals, the investor ought to predict more reliably the subsequent asset price changes. 

Relatedly, an integrated portfolio should benefit from signal diversification in the form of less 

volatile payoffs. Last but not least, a portfolio that integrates many styles is less trading 

intensive, and thus more cost effective, than holding each style as a separately-managed entity. 

For the above reasons, one may readily agree that style integration is a sensible approach that 

may improve performance relative to standalone style portfolios. This, however, begs the 

question: How shall an investor integrate K styles at asset level (i.e., within a unique portfolio)? 
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Specifically, how may she decide the weights that the integrated portfolio should allocate to 

each of the individual styles?  

This paper makes two contributions to the literature on style integration. Our first 

contribution is to propose a simple, yet versatile, framework to conduct style integration. By 

doing this, we provide academics and practitioners alike with a well-structured way to blend 

multiple styles into a single asset allocation. The proposed framework is very flexible as it is 

applicable to long-only, short-only, as well as long-short investment styles, for any asset class. 

The recommended framework nests many integration approaches: a naïve integration approach 

with time-constant, equal-weights for all styles (Equal-Weighted Integration; EWI) and five 

sophisticated approaches with time-varying, heterogeneous style exposures determined by 

different criteria such as utility maximization (Optimized Integration; OI), persistence in 

performance (Rotation-of-Styles Integration, RSI), volatility (Volatility Timing Integration, 

VTI), pricing ability (Cross-Sectional Pricing Integration, CSI) and principal components 

analysis (Principal Components Integration, PCI). In essence, the EWI, OI and RSI methods 

are not new (e.g., Barberis and Shleifer, 2003; Brandt et al., 2009; Fitzgibbons et al., 2016), but 

the VTI, CSI and PCI methods have not been considered yet in the style integration literature.  

Illustrating the flexibility of the integration framework, our second contribution is to deploy 

the above approaches in the context of a “universe” of 11 commodity futures investment styles 

with in mind the idea to assess their relative effectiveness. To our knowledge, no prior study 

(for any asset class) has conducted such a comprehensive analysis of alternative style-

integration approaches. Compared to the 11 standalone portfolios and the other five integrated 

portfolios, the naïve EWI portfolio stands out as it generates the most attractive reward-to-risk 

ratio profile (Sharpe, Sortino and Omega ratios) and the lowest crash risk (downside volatility, 

99% Value-at-Risk, and maximum drawdown). The failure of more sophisticated integration 

approaches to outperform the EWI portfolio suggests that the benefits from allowing time-
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varying and heterogeneous exposures to the K styles are offset by estimation risk and perfect-

foresight bias. We adduce evidence that the de facto OI approach to integration (see, e.g., Brandt 

et al., 2009; Barroso and Santa-Clara, 2015; DeMiguel et al., 2017 among others) is not more 

effective than the simpler EWI, VTI and CSI approaches that do not require solving an 

optimization problem at each portfolio formation time. These key findings remain unchallenged 

when we introduce trading costs, alternative style-weighting schemes and commodity scoring 

schemes, data snooping tests, and economic sub-period analyses.  

Our article speaks to a recent, yet growing, literature on style integration for equities 

(Barberis and Shleifer, 2003; Brandt et al., 2009; Frazzini et al., 2013; Fitzgibbons et al., 2016; 

DeMiguel et al., 2017), currencies (Kroencke et al., 2014; Barroso and Santa-Clara, 2015), 

commodities (Fuertes et al., 2010, 2015; Blitz and De Groot, 2014) and across markets (Asness 

et al., 2013, 2015). Common across these studies is their focus on one integration approach. We 

complement this literature in two ways. First, we formalize a simple and flexible integration 

framework that nests not only existing integration approaches (EWI, OI and RSI) but also 

various other approaches not considered as yet in the style integration literature (VTI, CSI and 

PCI). Second, we conduct an empirical “horse-race” across various integration methods to 

investigate their relative effectiveness at harvesting commodity returns and managing 

commodity risk. To our best knowledge, an empirical exercise of this nature has not been 

conducted as yet for any asset class.  

In adducing empirical evidence that the naïve EWI approach is not surpassed by 

sophisticated integration approaches, our article speaks to two other literatures. It adds to a 

voluminous literature on forecast combination where the equal-weights approach has become 

the benchmark to confront any newly developed forecast combination with (see Timmermann, 

2006, for a survey). It also speaks to the literature on asset allocation. DeMiguel et al. (2009) 

establish empirically that the naïve 1/N rule to allocating N assets into a portfolio is at least as 
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good as 14 optimal portfolio allocations in terms of Sharpe ratio, certainty equivalent return and 

turnover. However, this finding is contested by Kirby and Ostdiek (2012) and Fletcher (2011) 

through volatility timing strategies.  

The paper proceeds as follows. Section 2 presents the asset allocation framework. Section 

3 discusses the data and the main empirical findings. Section 4 conducts a battery of robustness 

tests, before concluding in Section 5. 

2. Methodology 

2.1. A flexible framework for asset allocation 

Let the cross-section of assets be denoted � = 1, . . , �, the styles � = 1, … , 	, and the portfolio 

formation times 
 = 1, … , �. Bold font is used hereafter to represent matrices and vectors. At 

each portfolio formation time t, the investor allocates wealth to the N available assets according 

to the � × 1 asset-allocation (or asset weighting) vector �� constructed as  

 �� ≡ �� × �� = ���,�,� … ��,�,�⋮ ⋱ ⋮��,�,� … ��,�,�� ���,�⋮��,�� = ���,�⋮��,��      (1) 

where �� is a � × 	 score matrix and �� is a 	 × 1 signal- (or style-) weighting vector that 

defines the style exposures. The sign of the ith asset allocation weight ��,� dictates the type of 

position, i.e., ��,� ≡ ��,� > 0, and ��,�# ≡ ��,� < 0 where L denotes long and S denotes short. 

For most of the study, as regards the � × 	 score matrix �� the focus is on the ternary 

scoring scheme ��,%,� ∈ '−1,0,1) which assigns, according to the kth characteristic, a score of 1 

(buy) to the quintile of assets with the greatest expected price increase; a score of -1 (sell) to the 

quintile of assets with the greatest expected price decrease; and a score of 0 to the remaining 

assets. The next section discusses the construction of the score matrix in our specific commodity 

futures context. 
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The proposed framework, Equation (1), allows other scoring schemes. One is defined by 

the standardized signal ��,%,� ≡ *+�,%,� = (*�,%,� − *̅%,�)/0%,�1  where *�,%,� denotes the kth 

characteristic of asset i at time t. Another is defined by the standardized ranking ��,%,� ≡ 2̃�,%,� 

= (2�,%,� − 2%̅,�)/0%,�4  where 2�,%,� ∈ '1, … , �) is the rank of asset i at time t according to the kth 

characteristic. These scoring schemes are included in our study as part of various other 

robustness checks.  

A key investor decision is which importance to give to the K style portfolios at each 

portfolio formation time t. This aspect of the integration is captured by the 	 × 1 weight vector 

�5 which accommodates time-varying, heterogeneous style-exposures. Section 2.3 formalizes 

various determination approaches for the style-weights which include extant and new ones. 

The portfolio analysis is conducted throughout the paper in an out-of-sample1 and fully-

collateralized experiment that mimics the investor’s decisions in real time. The commodity 

allocations ��,� obtained by weighting the scores ��,%,� with �%,�, as formalized in Equation (1), 

are normalized to ensure a full investment (�6�,� = ��,�/ ∑ 8��,�8��9�  so that ∑ 8�6�,�8��9� = 1). Thus 

�: � ≡ (�6�,�, . . , �6�,�) defines the final commodity allocations at portfolio formation time (month 

end) t. The excess return of the long-short fully-collateralized integrated portfolio held for one 

month is  

 ;<,�=� = ∑ �6�,�>? <@,ABC<@,A��9� = ∑ �6�,�;�,�=���9� = ∑ �6�,� ;�,�=�� − ∑ |�6E,�# |;E,�=�E                   (2) 

with ∑ �6�,� � = 0.5 and ∑ �6�,�#� = −0.5 since each style allocates an equal mandate to the longs 

and shorts. At time t+1 a new commodity allocation vector �: �=� is obtained, and so forth. 

The commodity allocation framework proposed is very flexible also in that it nests any 

standalone (e.g., term-structure or momentum) style. For concreteness, the kth standalone style 

                                                                 

1 The terminology out-of-sample means in the present context that at each portfolio formation 
time t the investor’s allocation vector �� is constructed from past data. 
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emerges from Equation (1) for weight vector �� with the kth entry set at 1 (all other entries at 

0). Constraints can be easily imposed so that the framework nests also long-only (��,%,� ∈ '0,1) 

with �%,� ≥ 0) and short-only (��,%,� ∈ '0, −1) with �%,� ≥ 0) portfolio construction 

approaches. 

2.2. Individual long-short commodity portfolios 

The set of individual styles entertained in the paper is meant to be exhaustive in the sense that 

it is representative of the commodity investing literature (see Miffre, 2016, for a review).2 Each 

individual style buys (shorts) the commodity quintile deemed to appreciate (depreciate) the 

most. Appendix A lists the specific variables or signals used to predict the commodity futures 

returns in each style, as well as the supporting studies. Now we motivate the K=11 commodity 

styles that we subsequently integrate.  

The term structure style builds on the theory of storage (Kaldor, 1939; Working, 1949; 

Brennan, 1958) which relates the slope of the term structure of commodity futures prices to 

inventory levels and to the costs/benefits of owning the physical commodity. As empirically 

shown by Erb and Harvey (2006), Gorton and Rouwenhorst (2006), and Bakshi et al. (2017), a 

premium can be earned by taking long (short) positions in futures with high (low) roll-yields. 

According to the hedging pressure hypothesis developed by Cootner (1960) and Hirshleifer 

(1988), net long (short) speculators demand a risk premium for taking on the risk of falling 

(rising) prices that net short (long) hedgers seek to avoid. Evidence of a hedging pressure 

premium is adduced by Chang (1985), Bessembinder (1992), De Roon et al. (2000) and Basu 

and Miffre (2013). Two hedging pressure styles arise from two distinct signals -- buy (sell) 

                                                                 

2 Our usage of the term “style” is somewhat broad to encompass all the long-short commodity 
strategies employed in the literature to generate returns in excess of the risk free rate (premia). 
We are agnostic on whether those returns are compensation for exposure to risk factors or a 
reflection of market anomalies. 
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futures with high (low) hedgers’ hedging pressure, or buy (sell) futures with high (low) 

speculators’ hedging pressure. 

A momentum premium in commodity futures markets has been evidenced by Erb and 

Harvey (2006), Miffre and Rallis (2007), Asness et al. (2013), Gorton et al. (2012) or Bakshi et 

al. (2017). The well-known momentum style essentially buys past winners and sells past losers.  

A value premium in commodity futures is documented in Asness et al. (2013) using a long-

term mean reversion signal. This style buys long-term losing (high-value or cheap) commodities 

and sells long-term winning (low-value or expensive) commodities.  

A volatility premium strategy is motivated by the theory of Dhume (2011) and Gorton et 

al. (2012) and empirically supported by Szymanowska et al. (2014). In a consumption CAPM 

framework, Dhume’s (2011) model predicts that commodity futures with high volatility 

correlate positively with durable consumption growth and thus, fail to act as a hedge against 

intertemporal risk: as a result, investors demand compensation for holding them. Combining 

aspects from the theories of storage and hedging pressure, the model of Gorton et al. (2012) 

also predicts that a volatility premium is earned by buying (selling) commodity futures with 

high (low) volatility.  

The open interest strategy is motivated by Hong and Yogo (2012) who argue that open 

interest (OI) is a pro-cyclical indicator of economic activity and hence, unexpected OI changes 

can predict commodity futures returns. Evidence of a premium obtained by buying-selling 

commodity futures using open interest changes as the sorting signal is also adduced by 

Szymanowska et al. (2014).  

A liquidity premium in commodity futures is evidenced in Szymanowska et al. (2014) using 

the “Amivest” measure of liquidity as sorting signal (Marshall et al., 2012). The corresponding 

premium captures the compensation that investors demand in the form of excess returns for 

taking long positions in commodity futures with relatively low liquidity.  
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Building on the negative relation between commodity returns and changes in the US$ 

effective exchange rate index of Erb and Harvey (2006), the US$ beta signal is used by 

Szymanowska et al. (2014) to capture a foreign exchange (FX) premium; the latter reflects the 

compensation that investors demand for holding commodity futures with low US$ betas. 

Commodities are well-known for providing a hedge against inflation shocks (Bodie and 

Rosansky, 1980; Erb and Harvey, 2006; Gorton and Rouwenhorst, 2006). Building on this 

stylized fact, Szymanowska et al. (2014) document an inflation risk premium that reflects the 

compensation demanded by investors for holding commodity futures with high sensitivity to 

inflation shocks.  

Using total skewness as signal, portfolios that are long (short) in commodity futures with 

the most negative (positive) skew are shown to capture a sizeable premium by Liu et al. (2017) 

and Fernandez-Perez et al. (2018). The premium can be rationalized by investors’ preferences 

for skewness under cumulative prospect theory and selective hedging practices.  

2.3. Integrated portfolios 

We formulate six style-integration approaches within the proposed framework that correspond 

with six different style-weighting schemes, ��, in Equation (1).  In the first integration approach 

the style exposures are time-constant and pre-determined. In the remaining five approaches, the 

exposures are time-varying, i.e., estimated at each portfolio formation time t using prior 60-

month data.  For now, we focus on the parsimonious score matrix �� with ternary elements ��,%,� 

∈ '−1,0,1). 

Equally-Weighted Integration (EWI)  

By assigning constant and identical exposures to the 	 individual style premia; i.e., �� = � =
H�� , … , ��IJ

, the EWI approach is naïve yet appealing for various related reasons. First, it incurs 

no estimation risk as it does not require weight estimation. Second, it sidesteps perfect-foresight 
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bias meaning that even in the ideal scenario where estimation risk was negligible and hence, 

the K styles relative past performance was reliably established, good past performance is not 

guarantee for good future performance. Third, its simplicity reduces the scope for data mining 

because it does not require ranking the K individual styles using past data which requires ad-

hoc choices (e.g., length of past data window and specific performance criteria) and multiple 

testing. 

Prior style integration studies employ an equal-weighting scheme similar to EWI; see e.g., 

Leippold and Rueegg (2017) and Fitzgibbons et al. (2016) for equities, Kroencke et al. (2014) 

for currencies, and Blitz and De Groot (2014) and Fuertes et al. (2015) for commodities.  

Optimal Integration (OI)  

The weights that the integrated portfolio assigns to each of the K individual style portfolios are 

defined as those that maximize the conditional expected power utility of the integrated portfolio. 

This is done by solving at each portfolio formation time t the following optimization problem  

 max�   N�OPQ;<,�=�RS = N� TQ�=∑ U: @,AV@,ABCW@XC RCYZ[��[\ ] ,   ^. 
.  �% ≥ 0                   (3) 

where �6�,� = ��,�/ ∑ 8��,�8��9� = ∑ _@,`,Aa`b̀XC∑ 8∑ _@,`,Aa`b̀XC 8W@XC  are the normalized asset allocations stemming 

from the style-weighting vector �� that solves Equation (3), and c is the coefficient of relative 

risk aversion; we use c = 5. By modeling the investor’s preferences with power utility, we can 

parsimoniously capture the higher moments of the return distribution of the integrated portfolio.  

Brandt et al. (2009) propose an equity portfolio optimization approach based on firm 

characteristics where the N allocations are defined as optimal deviations from a given 

benchmark (e.g., value-weighted market portfolio) allocations denoted �d � ≡ (�e�,�, … , �e�,�). 

Thus, a simple generalization of our Equation (1) as �� = �d � + �� (�� × ��) nests, in essence, 
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the Brandt et al. (2009) parametric portfolio approach.3 In the present application, �d g = h, as 

commodity futures are in zero net supply, and the factor 1/� is immaterial because it cancels 

out after the normalization of �� towards �: �. Barroso and Santa-Clara (2015) and DeMiguel et 

al. (2017) deploy the Brandt et al. (2009) style integration method for currencies and stocks, 

respectively.  

Rotation-of-Styles Integration (RSI) 

At each month-end, the RSI portfolio has full exposure to the jth standalone style with the 

highest Sharpe ratio (�E,� = 1). All other styles receive zero weight, �%,� = 0, for � =
1, … , 	 (� ≠ j). Over time, the RSI strategy aims to exploit persistence in relative style 

performance.  

The RSI approach is motivated by the theoretical style-switching model of Barberis and 

Shleifer (2003) where investors allocate capital based on relative style performance. Evidence 

of style-based feedback trading among U.S. equity funds is provided by Frijns et al. (2016).  

Volatility Timing Integration (VTI) 

In this integration approach, the importance given to the kth standalone style is inversely 

proportional to its risk (proxied by the variance of past monthly returns) as �%,� ≡
σ%[l ∑ σ%[l�%9�⁄ . The approach is inspired by the Kirby and Ostdiek (2012) volatility-timing (or 

risk-parity) strategy for allocating N assets into a portfolio. Specifically, evidence has been 

adduced to suggest that volatility-timing outperforms the equal-weight (1/�) allocation 

                                                                 

3 Strictly-speaking, in order to nest the Brandt et al. (2009) approach in Equation (1), the score 
matrix �n should contain the demeaned and standardized signals; we consider this scoring 
scheme and alternative ones as robustness checks. As in Brandt et al. (2009), the investor is 
assumed to maintain constant style-exposures, �, over the past 60-months used to solve 
Equation (3). Effectively, by solving the optimization problem at each portfolio formation time 
t, the style exposures are allowed to change over time, ��. We deployed the OI approach also 
for c = '3, 10) and the main insights hold.  



12 

 

approach advocated by DeMiguel et al. (2009); see, for instance, Kirby and Ostdiek (2012) for 

US equities, and Fletcher (2011) for UK equities.  

Cross-Sectional Pricing Integration (CSI) 

The weights �% reflect the ability of the individual style premia to explain the cross-sectional 

variation of commodity futures returns. The idea is to give higher (lower) weights to the premia 

that best (worst) price commodity futures contracts. As in Fama-MacBeth (1973), each month-

end 
 we estimate univariate time-series OLS regressions per commodity � = 1, … , � and style 

� = 1, … , 	 (a total of � × 	 regressions) using the past 60-month window of data  

;�,p = q�,% + r�,%s%,p + t�,p, ^ = 
 − 59, … , 
                                         (4) 

where ;�,p is the month s excess return of commodity i, s%,p is the month s excess return of the 

kth style, t�,p is an error term, q�,% and r�,% are unknown coefficients to estimate. At step two, 

we estimate on each month s (within the 60-month window) a cross-sectional OLS regression  

;�,p = v%,pw + v%,p� rx�,% + y�,p, � = 1,2, … , �    (5) 

for ^ = 
 − 59, … , 
 (60 × 	 regressions). The exposure of the CSI portfolio to the kth style is 

given by the average explanatory power of the kth factor in Equation (5) as �% ≡
�|w ∑ }%,pl�p9�[~� .  

Principal Components Integration (PCI)  

At each month-end, we extract the K principal components from the covariance matrix of 

individual style premia. Let �E denote the K-vector of loadings (or jth eigenvector) obtained for 

the jth principal component, j = 1 … 	, and �E its explanatory power. The PCI weights are �5 ≡
�C�C=����=⋯=�����C=��=⋯=�� , where m is the number of principal components that explain at least τ of the 

total variation in the individual style premia; we use τ=90% which is arbitrary but conservative.  
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3. Data and Empirical Results  

3.1.Data 

The empirical analysis is based on settlement prices, hedgers’ and speculators’ open interest, 

total open interest and volume data from Thomson Reuters Datastream for 28 commodity 

futures. The contracts cover all sectors: 12 agricultural (cocoa, coffee, corn, cotton, frozen 

concentrated orange juice, oats, rough rice, soybeans, soybean meal, soybean oil, sugar 11 and 

wheat), 6 energies (electricity, gasoline RBOB, heating oil, light sweet crude oil, natural gas 

and unleaded gas), 4 livestock (feeder cattle, frozen pork bellies, lean hogs, live cattle), 5 metals 

(high grade copper, gold, palladium, platinum, silver 5000) and lumber. Returns are calculated 

as changes in the logarithmic (log) prices of front-end contracts up to one month before 

maturity; the positions are then rolled to the second-nearest contract. The cross-section of 

commodities is dictated by the availability of data on speculators’ and hedgers’ open positions 

as compiled by the Commodity Futures Trading Commission. Data on the US consumer price 

index and on the USD versus major currency index are also obtained from Thomson Reuters 

Datastream. Although the starting date of our dataset is January 1979, the out-of-sample period 

that is common to all portfolios, individual and integrated, is from January 1992 to April 2016.  

3.2. Performance of individual and integrated styles 

Table 1, Panel A summarizes the monthly excess returns of the 	 = 11 long-short portfolios 

discussed in Section 2.2 over the entire sample period from January 1992 to April 2016 (� =
292 months). According to both the reward-to-risk and crash risk profiles, the skewness, 

speculators’ hedging pressure, hedgers’ hedging pressure, term structure and momentum 

portfolios rank top whereas the liquidity, value, open interest and volatility portfolios rank 

bottom. The certainty equivalent return (CER) which represents the risk-free rate that an 

investor is willing to accept instead of engaging in a particular risky portfolio strategy, based 
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on power utility preferences with c = 5 also confirms the ranking.4 Despite the poor 

performance of some of the strategies we include all of them in the subsequent integration 

exercise for three reasons. First, we want to focus on the “universe” of long-short commodity 

styles in our analysis in order not to engage in a pre-selection process which might introduce 

data mining bias. Second, as discussed next, a given strategy may rank poorly over the entire 

sample period but much more favorably over a specific sub-period; hence, a pre-selection of 

individual strategies to integrate just the best ones might incur look-ahead bias. Third, a poorly 

performing style might still play a diversification role in an integrated portfolio if its returns are 

lowly correlated with those of other styles.  

Confirming a common wisdom in the commodity markets literature, we note that any of 

the long-short styles summarized in Table 1 offers superior reward-to-risk and crash risk 

profiles than long-only benchmarks such as an equally-weighted, monthly-rebalanced portfolio 

of the 28 commodities and the S&P-GSCI. The online Annex Table A.I shows that these two 

portfolios generate a mean excess return of -0.0098 and 0.0007 for a relatively high standard 

deviation of 0.1266 and 0.2155 (all annualized) and a large maximum drawdown of -0.5672 

and -0.8556.  

Table 1, Panel B reports the Sharpe ratio of the individual strategies and the corresponding 

ranking over 5-year non-overlapping rolling windows. Interestingly, the value strategy switches 

from worse-performing in the 2nd period to top-performing in the last period. Likewise, the 

momentum strategy is positioned top in the 1st and 2nd periods but is outperformed by at least 6 

other styles in the next two periods. The relative performance of the 11 standalone portfolios 

                                                                 

4 The power utility-based certainty equivalent return is defined as �N} =H�l� I ∑ Q�=V�,ABCRCYZ[��[\�[��9w  with ;<,�=� the integrated portfolio excess return on month t+1 and T 

the number of out-of-sample months. �N} > 0 implies that the risky portfolio is more attractive 
than the risk-free asset.  
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varies over time posing a challenge to an investor that seeks to follow a single style. Style 

integration thus serves as a natural hedge against the underperformance of a given individual 

style over specific periods.  

[Insert Table 1 around here] 

Figure 1 plots the Sharpe ratio of the standalone styles deployed cumulatively over time 

(monthly expanding windows). The first point in each graph is the Sharpe ratio over an initial 

5-year investment window [1, t] and the last point in the graph represents the Sharpe ratio 

accrued over the entire sample period [1, T]. The graph confirms the instability in relative style 

ranking.  

[Insert Figure 1 around here] 

Table 2 provides three statistics to gauge the degree of (non)linear dependence across the 

K standalone styles. Focusing exclusively on linear dependence, Panel A reports the pairwise 

Pearson correlations across the excess returns of the K individual styles, and Panel B reports the 

partial coefficient of determination }%l (explanatory power of a regression of the kth style on all 

other styles). In the interest of robustness, Panel C reports the Spearman rank-order correlation 

that is able to capture (non)linear association between the K standalone-factor portfolio returns. 

[Insert Table 2 around here] 

All three statistics suggest that the K styles are mildly correlated with one exception pertaining 

to the two hedging pressure premia that exhibit a correlation of 66% (and a rank correlation of 

65%). Various negative correlations are observed which should help achieve diversification 

benefits. The value style, which is contrarian in nature, correlates negatively with most other 

styles. Significant negative correlations are also observed for the momentum style with the open 

interest and liquidity styles, and between the open interest style and the US$ beta style. The 

average correlations are low standing at merely 4% (pairwise Pearson correlation), 26% (}%l) 
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and 4% (pairwise rank correlation). This low dependence among the K styles motivates an 

integrated portfolio approach as a way of managing risk.   

We began by studying the performance of the naïve integration strategy, EWI, over the 

entire January 1992 to April 2016 period with results summarized in Table 3, Panel A, first 

column. The Sharpe ratio of the EWI portfolio is 0.94 which represents an improvement of at 

least 16% over each standalone style. The superior risk-adjusted performance of the EWI style 

is confirmed by more general measures that focus on downside volatility (Sortino ratio) or 

account for non-normality (Omega ratio). The certainty equivalent return (CER) is also the 

highest for the EWI portfolio (6.05% p.a.) versus the highest 5.87% p.a. across individual styles. 

The EWI portfolio has also lower non-normality risk with insignificant coefficients of skewness 

and kurtosis. Concerning “crash” risk, as captured by downside volatility, 99% Value-at-Risk, 

and maximum drawdown measures, the EWI portfolio is also appealing vis-à-vis the 

standalone-style portfolios. 

[Insert Table 3 around here] 

To complement the static comparison of the EWI style and individual styles enabled by 

Table 1, we now plot in Figure 2 the corresponding Sharpe ratios, mean excess returns and 

volatilities that an investor would obtain cumulatively over time (one-month-expanding 

windows). The Sharpe ratio (Panel A) of the EWI portfolio is consistently higher than that of 

the individual strategies. The mean excess return (Panel B) and volatility (Panel C) suggest that 

while the EWI portfolio does not accrue the largest mean excess return always, it delivers by 

far the most stable stream of returns which bears out the benefits in terms of style (or signal) 

diversification. 

[Insert Figure 2 around here] 

A natural question is whether the sophisticated integrations that allow for time-varying, 

heterogeneous style exposures improve upon EWI. Table 3, Panel A shows that long-short 



17 

 

portfolios constructed by optimal integration (OI), rotation-of-styles integration (RSI), 

volatility-timing integration (VTI), cross-sectional-pricing integration (CSI) and principal 

component integration (PCI) are unable to challenge the reward-to-risk and crash risk profiles 

of the EWI portfolio. Amongst the five sophisticated integrated portfolios, the closest 

competitors to the EWI portfolio are the VTI and CSI portfolios since they exhibit similar 

downside risk profiles albeit economically lower reward-to-risk ratios (e.g., Sharpe ratios of 

0.83 and 0.82 versus 0.94 for EWI). The OI approach that is becoming the de facto approach in 

the literature on style integration (see. e.g., Brandt et al., 2009; Barroso and Santa-Clara, 2015; 

DeMiguel et al., 2017 among others) offers a Sharpe ratio that stands at 0.69 merely. The RSI 

and PCI portfolios close the horse-race by offering the smallest Sharpe ratios of 0.53 and 0.37, 

respectively, and the most unappealing downside risk profiles.  

To assess the statistical relevance of our findings we calculate the Opdyke (2007) p-value 

for the null hypothesis �w: �}��� ≤ �}E versus ��: �}��� > �}E where j denotes a 

sophisticated integrated portfolio. The p-values, reported in Table 3, Panel A reject the null 

hypothesis at the 5% or better for the RSI and PCI portfolios, and at the 10% level for OI. The 

Sharpe ratios of the EWI, VTI and CSI portfolios are statistically identical. Yet given the 

simplicity of the EWI approach versus the estimation entailed in the VTI and CSI approaches, 

the former is preferred. Unreported results for the Opdyke test �w: �}��� ≤ �}% with k 

denoting an individual style portfolio reject the null hypothesis at the 5% or 1% in all cases 

except the skewness portfolio. Thus over the sample period the reward-to-risk trade-off of the 

EWI style is comparable to that of the skewness style; however, the EWI portfolio remains 

preferable on account of its more favorable crash risk profile.  

In order to account for higher order moments of the return distribution, the last two rows 

of Table 3, Panel A, report the CER of each integrated portfolio and p-values for the null 

hypothesis �w: �N}��� ≤ �N}E  versus ��: �N}��� > �N}E  where j denotes an integrated 
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portfolio other than the EWI. The p-values solidly reject the null hypothesis at conventional 

levels confirming the dominance of the EWI approach.5 Unreported p-values for �w: �N}��� ≤
�N}%, with k denoting a given standalone-style portfolio, also reject �w; the one exception is 

the skewness portfolio. 

Table 3, Panel B provides a dynamic snapshot of the Sharpe ratio of the integrated 

portfolios over non-overlapping 5-year rolling windows, and associated ranking in parentheses. 

EWI offers almost the best reward-to-risk ratio throughout. The cumulative performance over 

an initial 5-year window expanded monthly, shown in Figure 3, confirms this finding.  

[Insert Figure 3 around here] 

Specifically, the graphs reveal that the outstanding Sharpe ratio of the EWI strategy versus 

sophisticated integrations is driven both by its effectiveness to capture larger mean excess return 

and its diversification benefits (lesser volatility) but the former plays a stronger role. Among all 

integration strategies, the lowest volatility is achieved by VTI, then EWI and CSI (Panel C) but 

the EWI portfolio clearly excels at capturing large excess returns (Panel B).6 

                                                                 

5 The p-values for the test of significance of the CER differential are obtained through the Politis 
and Romano (1994) bootstrap method. We obtain B=10,000 pairs of pseudo time-series of 
excess returns ';���,�∗ , ;E,�∗ ) with the same length, T=292 months, as the actual time-series 

{;���,�, ;E,�) by resampling blocks of random length from the latter. The block-length is a 

geometrically distributed variable with expected value 1/�. For space constraints, we report 
results for q=0.2; the results for q=0.5 offer similar insights and available from the authors upon 
request.  

6 A relevant question is whether one might be better off by optimizing the portfolio weights of 
the 28 individual commodities directly, rather than relying on style-integration which can 
formally be described as a parametric representation of portfolio weights. To address this 
question empirically, we optimized the weights of the 28 commodities over the previous 60-
month window assuming a power utility and ensuring full investment. Specifically, we set the 

optimization problem as max�   N�OPQ;<,�=�RS = N� TQ�=∑ �@,AV@,ABCW@XC RCYZ[��[\ ] ,   ^. 
.  ∑ 8ω�,�8��9� =1, where ω�,� is the weight of commodity ith at portfolio formation time t. With a Sharpe ratio 

of 0.40 and maximum drawdown of -0.30, the results reported in the online Annex Table A.I. 
confirm the superiority of most integrated portfolios versus the direct optimization of the 
individual commodities’ weights. 
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We assess the extent to which the excess returns of the different integrated portfolios reflect 

exposure to the K underlying styles by estimating OLS regressions of the long-short integrated 

portfolio excess returns on the long-short excess returns of the K standalone styles. Table 4 

reports the results. Two observations can be made as regards the EWI portfolio. First, the K 

sensitivities are significantly positive and similar in size which suggests that, as it was intended, 

EWI attains equal style exposures. Second, the time-variation in the returns of the K styles 

jointly explains 98% of the time-variation in the EWI portfolio returns, bearing out its 

effectiveness to blend signals.  

[Insert Table 4 around here] 

As regards the sophisticated integration strategies and consistent with our prior findings, the 

regressions for the VTI and CSI portfolios reveal that these integrated approaches are the closest 

to EWI; their R² (above 90%) and vectors of sensitivities indirectly suggest that the resulting 

commodity allocations, �� from Equation (1), are similar across the three integration methods. 

As expected, the RSI portfolio loads positively on the individual styles that perform best on 

average (term structure, speculators’ hedging pressure, momentum and skewness; c.f. Table 1). 

Interestingly also, the RSI style is most sensitive to the momentum premia which is aligned 

with the theoretical prediction from the Barberis and Shleifer (2003) model that style-based 

investing can generate momentum in individual asset returns at intermediate horizons. With 

merely 17% of the time-variation in the PCI returns jointly explained by the 11 underlying style 

portfolios and only two significant sensitivities, the PCI method is the least effective at 

integrating styles which is not surprising given their mild commonality. 

3.3. Role of the number of standalone styles  

To examine the effect of increasing the number of styles, K, on the benefits of integration and 

on the relative efficiency of the integration approaches, Figure 4 presents box-and-whisker plots 

of the Sharpe ratio, mean excess return and volatility for 	 = '2, … . ,11). Panels A1-A3 show 
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how the performance of the EWI portfolio evolves with K; the two horizontal lines in each 

graph denote the range of the performance measure at hand across the standalone-style 

portfolios. Panels B1-F3 show the differential performance of EWI versus OI, RSI, VTI, CSI 

and PCI portfolios. 

[Insert Figure 4 around here] 

Two interesting patterns emerge from Panels A1 to A3. First, the Sharpe ratio of the EWI 

portfolio improves with K, the number of integrated styles. Second, the mean return of the EWI 

portfolio rises, and its volatility falls, with K but the latter effect dominates. Hence, it is the risk 

diversification that drives the Sharpe ratio pattern. Three styles suffice (	 ≥ 3) for the EWI 

portfolio essentially to be less volatile than all of the single-style portfolios.  

The remaining plots show an upward-sloping Sharpe ratio �}���� − �}�E  in all five 

comparisons j={OI, RSI, VTI, CSI, PCI} confirming that the reward-to-risk profile of the EWI 

portfolio improves with K at a faster rate than that of sophisticated integrated portfolios. The 

mean excess return differential ����� − ��E  also rises with K in all five cases, suggesting that the 

relative superiority of the EWI portfolio at capturing higher mean excess returns rises as we 

integrate more styles. The volatility differential of EWI versus OI portfolios, VTI portfolios and 

CSI portfolios has essentially zero slope suggesting that the diversification benefits of all three 

approaches improve at a similar rate with K. In contrast, the plots of 0���� − 0�<�� and 0���� −
0��#� slope downwards suggesting that as K increases the EWI approach is more efficient at 

providing risk diversification benefits. Figure A.I in the online Annex provides box-and-

whisker plots of the reward-to-risk profile (versus K) of each alternative integrated portfolio. 
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4. Robustness Analysis 

We now test whether the dominance of the naïve EWI portfolio withstands the consideration 

of trading costs, alternative integration approaches and scoring schemes, and economic sub-

periods. 

4.1. Turnover and transaction costs 

To get a sense of how trading intensive each investment (standalone and integrated) strategy is, 

we measure the portfolio turnover (TO) defined as the time average of all the trades incurred 

��E = ��[� ∑ ∑ Q8�6E,�,�=� − �6E,�,�B8R��9��[��9�     (6) 

 = 1, … , � denotes each of the (month-end) portfolio formation periods in the sample, �6E,�,� is 

the ith commodity allocation weight dictated at month t by the jth style according to Equation 

(1), �6E,�,�B ≡ �6E,�,� × �V@,ABC  is the actual portfolio weight right before the next rebalancing at 


 + 1, ;�,�=� is the monthly return of the ith commodity from month-end 
 to month-end 
 + 1. 

Thus TO captures the mechanical evolution of the allocation weights due to within-month price 

dynamics (e.g., �6E,�,� increases to �6E,�,�B when ;�,�=� > 0). Figure 5, Panel A graphs TO.  

[Insert Figure 5 around here] 

The integrated portfolios are generally more trading intensive than the individual styles 

given that the former invest potentially in all N commodities whereas the latter invest, by 

construction, only in 40% of the N commodities (i.e., top/bottom quintiles). Two exceptions are 

the individual term structure and open interest styles which exhibit the highest TO. The trading 

intensity of EWI is comparable to that of RSI, VTI and CSI; not only OI and PCI are less 

effective at capturing risk premia (Figure 3) but also they are more trading intensive. 

The key question is whether transaction costs (TC) wipe out the outperformance of the EWI 

portfolio. To address this question, we calculate the net return of each portfolio as 

 ;̃<,�=� = ∑ �6�,�;�,�=� − �� ∑ 8�6�,� − �6�,�[�B8��9���9�                           (7) 
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using proportional trading costs of 8.6 bps (Marshall et al., 2012).  Figure 5, Panel B shows that 

the superior reward-to-risk of the naïve EWI portfolio is not challenged by trading cost 

considerations.  

4.2. Alternative commodity scoring schemes  

Thus far, our investigation has focused on a particular aspect of the integration framework, the 

style-weighting vector ��, while maintaining the same ternary scoring scheme ��,%,� ∈
'−1,0,1). We now turn our attention to the role played by the scoring scheme by deploying 

Equation (1) with a matrix �� = '��,%,�) populated by either standardized signals or 

standardized rankings.7 For consistency, we again focus on the extreme quintiles and fully 

collateralize the positions. Table A.II in the online Annex reports a battery of performance 

measures for the integrated portfolios based on standardized signals and standardized rankings 

(c.f., Table 3).  

A comparison of Table 3 and Table A.II in the online Annex shows that, relative to the 

weighting scheme, ��, the choice of scoring scheme, ��, plays a small role on the relative 

performance of the integrated portfolios. For instance, there is no clear contrast amongst the 

EWI portfolios obtained with the various scoring schemes; this is not surprising given that the 

allocations '��,����)�9��  obtained from Equation (1) with the ternary scores {-1,0,1} correlate 

highly with those obtained with the standardized signals (rankings) at 0.98 (0.85) on average 

across commodities. With alternative scoring schemes, the EWI portfolio remains the leading 

integrated portfolio as regards its reward-to-risk tradeoff and downside risk profile.  

                                                                 

7 As noted in Section 2.3, the OI strategy of Brandt et al. (2009) is a particular case of the 
framework encapsulated in Equation (1) for a score matrix �n with elements given by the 
standardized rankings. The triple-scoring strategy deployed by Frazzini et al. (2013) for stocks, 
Kroencke et al. (2014) for currencies, and Fuertes et al. (2015) for commodities is an equal-
weights style integration that is nested in Equation (1) for a standardized-rankings matrix �� as 
well. 
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4.3. Reformulation of the sophisticated integration strategies 

This section reformulates the sophisticated integrations studied thus far. We adhere to the 

ternary scoring scheme, and the investor decision about the style exposures at each month end, 

��, is based as before on past 60-month data on each style. The integrated portfolios are held 

for a month. 

We design three alternative OI strategies where the objective function PQ;<,�=�R is the 

integrated portfolio’s quadratic utility, exponential utility or power utility with disappointment 

aversion of Gul (1991). Thus the investor solves at each portfolio formation time, respectively 

1) �q*�  [N�Q;<,�=�R − \l �q;�Q;<,�=�R], where ;<,�=� ≡ ∑ �6�,�;�,�=���9�  is the return of the 

integrated portfolio, and c is the relative risk aversion parameter (c = 5). 

2) �q*�    N�O−�[�(�=V�,ABC)/�S with absolute risk aversion parameter � = 5. 
3) �q*�    N�   Q�=V�,ABCRCYZ[��[\ �s ;<,�=� > 0

Q�=V�,ABCRCYZ[��[\ + H�� − 1I ¡Q�=V�,ABCRCYZ[��[\ ¢ �s ;<,�=� ≤ 0£     where ¤ ≤ 1 is the  

coefficient of disappointment aversion that controls the relative steepness of the value function 

in the gains/losses regions (we report results for A=0.6; similar results are obtained for A=0.8).8 

Leaving the utility setting aside, we consider an investor who is only concerned about 

minimizing risk and therefore the style exposures are obtained as ��?�  O�q;�Q;<,�=�RS subject 

to ∑ �%�%9� = 1 (to avoid the trivial solution �% = 0). For all the OI strategies considered, we 

consider two cases – non-negativity constraint (ω% ≥ 0) and no sign constraint (∀�%).  

Inspired by the cluster combination approach of Aiolfi and Timmermann (2006), we 

formulate a potentially smoother version of the former RSI strategy based on the three styles 

                                                                 

8 This utility function recognizes that investors are more sensitive to losses than to gains of the 
same magnitude. A = 1 entails the standard power utility function where there is no loss 
aversion. 



24 

 

with best past performance, RSI(3) hereafter. At each month-end, the RSI(3) portfolio has equal 

exposure to the three styles with the highest Sharpe ratio (�% = 1/3) and zero exposure to the 

remaining styles.  

We deploy two variants of the earlier VTI strategy inspired by Kirby and Ostdiek (2012). 

Firstly, the VTI(¦ = 4) approach that assigns weights inversely proportional to the style 

variance, ω% = (σ%[l)¨ ∑ (σ%[l)¨�%9�⁄ , with a stronger timing aggressiveness ¦ = 4.9 Secondly, 

the reward-to-risk timing integration (RRTI) approach with style weights �% =
(�%=/σ%l)¨ ∑ (�%=/σ%l)¨�%9�⁄  where �%= = max(0, �%), and �% is the mean excess return of the kth 

style; we also adopt ¦ = 4.  

We also consider a version of the CSI strategy that focuses on the first-stage of the Fama-

MacBeth (1973) approach (time-series pricing integration, TSI, hereafter). Specifically, we 

estimate univariate predictive time-series OLS regressions of the excess returns of each 

commodity � = 1, … , � on the past-month style premium � = 1, … , 	 (a total of � × 	 

regressions) 

;�,p = q�,% + r�,%s%,p[� + t�,p, ^ = 
 − 59, … , 
                            (8) 

and the exposure to the kth style is given by �% ≡ �� ∑ }�,%l��9�  where }�,%l  is the predictive 

power.10 Finally, we deploy the simplest version of PCI that uses just the first principal 

component, PCI(1).  

                                                                 

9 If ¦ = 0 (no volatility timing), then �% = 1/	 for � = 1, … , 	 and we have the EWI 
approach. If ¦ → ∞, (most aggressive volatility timing) the jth style with the lowest past 
volatility receives all the weight ωE = 1 (ω% = 0, � ≠ j); this is a volatility-based variant of 

the RSI approach.  

10 The performance of a TSI strategy based on Equation (8) with contemporaneous factor s%,p 

is inferior as borne out by a Sharpe ratio of 0.6846, maximum drawdown of -0.1563 and 99% 
VaR of 0.0519. 
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Table A.III in the online Annex reports the results. The EWI portfolio still presents the 

highest Sharpe ratio (0.94), highest CER (6.05%) and a relatively appealing downside risk 

profile. Another finding is that, consistent with our prior findings, the OI strategies with sign-

restricted weights ω% ≥ 0 perform better than the counterpart OIs with free weights. Table A.IV 

in the online Annex reports results for all of these sophisticated integration variants as regards 

their effectiveness at allocating commodities into portfolios. The evidence suggests that no 

integration method poses a challenge to the EWI approach in terms of harvesting large returns 

and managing risk. 

4.4. Is the superior economic performance of EWI due to data snooping? 

Data snooping risk needs to be quantitatively addressed in an empirical analysis of this nature 

that uses the same dataset repeatedly to implement various investment strategies. We deploy 

the Superior Predictive Ability test of Hansen (2005) in order to shield the inferences from this 

bias. 

Adopting the EWI strategy as our benchmark we appraise the relative performance of the 

¬ = 31 long-short investment strategies studied in the paper (eleven standalone styles in Table 

1, six integration strategies in Table 3 and fourteen alternative sophisticated integrations in 

Table A.III). Let ;,� denote the month t excess returns of strategy m (� = 1, … , ¬) and define 

;�®1 ≡ �q*Q;���,�, ;�,�, … . , ;̄ [�,�R. Performance of the mth strategy is measured in terms of 

the expected “loss” modelled as in Hansen (2005) with a linear mathematical function, °,� ≡
;�®1 − ;,�, and two nonlinear functions, °,� ≡ 1/�*±(v;,�) with curvature parameter v =
'1, 2). Likewise, for the benchmark we define the losses as °���,� ≡ ;�®1  − ;���,� and 

°���,� ≡ 1/�*±(v;���,�), respectively. The expected “loss” of the mth strategy relative to the 

benchmark is therefore N[²,�] = N[ °���,� −  °,�] for 
 =  1, . . . , � months. Strategy m is 

better than the benchmark (EWI) if and only if N[²,�]  >  0. The null hypothesis is that the 
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best of the M strategies incurs a larger “loss” than the benchmark EWI strategy; i.e., 

�w: N[²,�]  ≤  0, for all � = 1, . . . , ¬.11  

As shown in Table A.V of the online Annex, the large bootstrap p-values of the test, ranging 

from 0.3602 to 0.5116 across “loss” functions, are clearly unable to reject the null hypothesis. 

Thus our main finding that the EWI portfolio is not outperformed by any of the standalone-style 

portfolios or sophisticated integrated portfolios does not appear to be an artifact of data mining. 

4.5. Are the findings sample-specific? 

To address this question, we re-evaluate the performance of the standalone and integrated 

portfolios over different sub-periods defined according to economic criteria. First, we consider 

high versus low commodity market volatility regimes identified through a GARCH(1,1) model 

fitted to the monthly excess returns of the long-only (equally-weighted and monthly rebalanced) 

portfolio of all 28 commodities. The threshold to define the regimes is the average fitted 

volatility (0e = �� ∑ 0³���9� =12.25% p.a.). Second, we split the sample in two periods to reflect 

the so-called financialization of commodity futures markets roughly dated January 2006 (Stoll 

and Whaley, 2010). Finally, we consider recession versus expansion periods according to the 

NBER-dated business cycle phases. The results are shown in Table A.VI of the online Annex. 

The EWI portfolio obtains a reward-to-risk tradeoff which is as good as (often better than) 

that of the sophisticated integrated portfolios; according to the Opdyke test and the bootstrap p-

values for �w: �N}��� ≤ �N}E no individual style significantly outperforms the EWI style. 

Moreover, the EWI portfolio stands out as regards the battery of crash risk measures considered. 

The only exception is the NBER-dated recession periods but a caveat to this finding is that the 

                                                                 

11 The test is based on a statistic with a non-standard (sample dependent) distribution which we 
approximate using the Politis and Romano (1994) bootstrap method. We obtain B=10,000 
pseudo time series '²,�∗ ) for each investment strategy m by combining random-length sampled 

blocks from the actual {²,�). The block-length is a geometrically distributed random variable 

with expected value 1/�; we consider � = '0.2, 0.5). 
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corresponding sample size is too small (28 months) which weakens the reliability of the 

estimates. 

5. Conclusions 

A variety of strategies or “styles” have been proposed in the literature to capture the risk 

premium of commodity markets using predictive variables such as the roll yield or hedging 

pressure inter alia. This paper investigates the ability of style integration to improve portfolio 

allocation. 

Our first ambition is to help academics and practitioners alike to implement style 

integration in a well-structured manner. To do this, we formalize an allocation framework that 

nests any individual style and many integration methods. The flexible framework is illustrated 

for eleven long-short commodity styles but it has a broader appeal since it is applicable also to 

long- and short-only styles, as well as to other asset classes. Alternative integration approaches 

emerge from different ways to define the style exposures at each portfolio formation time such 

as the naive equal-weighted integration (EWI) and sophisticated integrations based on utility 

maximization, style rotation, volatility timing, cross-sectional pricing and principal components 

analysis. From a methodological viewpoint, the portfolio allocation framework proposed is thus 

useful to get insights as to which free parameters or restrictions are used by the existing 

integration approaches in the literature, and to provide some structure to develop integration 

methods such as, for instance, the novel ones that we consider in a commodity futures context. 

We conduct an extensive out-of-sample experiment that mimics the investors’ decisions in 

real time to assess the benefits of style integration for commodity futures, and the effectiveness 

of alternative integration methods on which there is a dearth of research for any asset class. A 

key finding is that the improvement in reward-to-risk tradeoff and crash risk profiles afforded 

by the naïve EWI portfolio (vis-à-vis the standalone style portfolios) is not challenged by 

sophisticated integration methods that allow for time-varying and style-heterogeneous 
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exposures. The rationale is that the gains from the latter are outweighed by estimation noise and 

“perfect foresight” bias. The findings are robust to trading costs, alternative scoring schemes, 

economic sub-period analysis and data snooping tests inter alia. Our empirical exercise is 

ambitious in that it compares the performance of many integration approaches, existing and 

novel ones, but the list of approaches considered may not be exhaustive. 

Our findings suggest that the naïve EWI portfolio is a challenging “benchmark” to confront 

the performance of newly proposed commodity portfolio strategies with. We hope that the 

simple yet flexible integration framework proposed instigates further research. Specifically, it 

would be interesting to see if the EWI approach also dominates the style-integration landscape 

for other asset classes.   
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Appendix A: Standalone long-short styles for commodity futures investing. 
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Figure 1. Cumulative reward-to-risk ratio of standalone styles.  

The figure graphs the annual Sharpe ratio of the K=11 standalone-style portfolios (see Appendix A) over 
sequential time windows expanded by one month at a time. The first plotted Sharpe ratio is based on 
monthly excess returns from January 1992 to Dec. 1996 and the last one on monthly excess returns over 
the full sample period from January 1992 to April 2016. HP denotes hedging pressure. 
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Figure 2. Performance of standalone styles and EWI strategy.  

The figure graphs cumulative Sharpe ratios, mean returns and standard deviations (all annualized) of the 
K=11 standalone long-short portfolios and the equally-weighted integrated portfolio (EWI) described in 
Section 2.3. The statistics are computed over windows expanded by one month at a time. The first point 
in each graph is based on monthly excess returns from January 1992 to Dec. 1996, and the last point 
covers the full sample period from January 1992 to April 2016. HP denotes hedging pressure.   
 

         Panel A: Sharpe ratio 

 
 

                   Panel B: Mean return            Panel C: StDev 
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Figure 3. Performance of EWI portfolio and alternative integrated portfolios. 

The graphs plot cumulative Sharpe ratios, mean returns and standard deviations (all annualized) over 
windows expanded by one month at a time. The first point is based on monthly excess returns from 
January 1992 to Dec. 1996, and the last point on the January 1992 to April 2016 period. EWI is equally-
weighted integration, OI is optimal-integration, RSI is rotation-of-styles integration, VTI is volatility-
timing integration, CSI is cross-sectional pricing integration and PCI is principal components 
integration.  

 
Panel A: Sharpe ratio 

 
 

Panel B: Mean return              Panel C: StDev 
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Figure 4. Number of styles and relative reward-to-risk profile of integrated portfolios. 

This figure reports box-and-whisker plots of the January 1992 – April 2016 Sharpe ratio, mean return and volatility (all annualized; vertical axis) of the equally-
weighted integrated (EWI) portfolio and differential with sophisticated integrated portfolios versus the number of styles K (horizontal axis). OI is optimal-
integration, RSI is rotation-of-styles integration, VTI is volatility-timing integration, CSI is cross-sectional pricing integration and PCI is principal components 
integration. The dash lines are the maximum and minimum of the performance measure across the 11 style portfolios. In each plot the rectangular area for each 
K represents the interquartile (25th-75th) range, the middle line represents the median and the crosses beyond the whiskers represents outliers defined as points 
outside the 1th-99th percentiles.  
 

       Panel A1: �}���                     Panel A2: ����            Panel A3: 0��� 

                   
   

       Panel B1: �}��� − �}´�                 Panel B2: ���� − �´�                            Panel B3: 0��� − 0´�   
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      (Cont.)  
      Figure 4. Number of styles and relative reward-to-risk profile of integrated portfolios. 
 
 
     Panel C1: �}��� − �}�#�                              Panel C2: ���� − ��#�                Panel C3: 0��� − 0�#�      

          

      Panel D1: �}��� − �}µ��                    Panel D2: ���� − �µ��                   Panel D3: 0��� − 0µ��     

                  



38 

 

      (Cont.)  
      Figure 4. Number of styles and relative reward-to-risk profile of integrated portfolios. 

 

      Panel E1: �}��� − �}�#�                      Panel E2: ���� − ��#�                Panel E3: 0��� − 0�#�     

               
 

      Panel F1: �}��� − �}<��                      Panel F2: ���� − �<��             Panel F3: 0��� − 0<�� 
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Figure 5. Turnover and net Sharpe ratio of individual and integrated portfolios. 
Panel A graphs the portfolio turnover. Panel B graphs the annual Sharpe ratio before and after 8.6 bps 
proportional costs per trade. HP denotes hedging pressure. EWI is equally-weighted integration, OI is 
optimal-integration, RSI is rotation-of-styles integration, VTI is volatility-timing integration, CSI is 
cross-sectional pricing integration and PCI is principal components integration. 

 

Panel A. Turnover  

      

 

Panel B. Sharpe ratio 
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Table 1. Performance of commodity investment styles. 
The table summarizes the performance of K=11 long-short investment styles based on the predictive signals stated in the first row (see Appendix A).  The 
portfolios are fully collateralized and held for one month. HP stands for hedging pressure. Panel A reports statistics for the monthly portfolio excess returns over 
the full sample period from January 1992 to April 2016. Mean and standard deviation (StDev) are annualized. Newey-West significance t-statistics are reported 
in parentheses. CER is the annualized certainty-equivalent return based on power utility preferences (with CRRA parameter c = 5). Panel B reports the annual 
Sharpe ratio of each style over 5-year non-overlapping rolling windows; the number in parenthesis is the 1 (top) to 11 (bottom) ranking.  

 

Mean 0.0567 0.0476 0.0546 0.0629 0.0195 0.0090 -0.0009 -0.0093 0.0208 0.0287 0.0885

(2.55) (2.46) (2.83) (2.30) (0.72) (0.45) (-0.05) (-0.43) (0.80) (1.13) (3.70)

StDev 0.1115 0.0951 0.0983 0.1261 0.1297 0.0945 0.0968 0.0957 0.1231 0.1338 0.1084

Skewness 0.2766 0.3220 0.2138 -0.0106 -0.1562 -0.2222 -0.0912 0.0290 -0.4687 0.3147 0.1167

(1.93) (2.25) (1.49) (-0.07) (-1.09) (-1.55) (-0.64) (0.20) (-3.27) (2.20) (0.81)

Excess Kurtosis 0.7300 0.3939 0.3710 0.7627 0.8919 0.3781 0.6243 0.5368 0.6785 1.4308 0.8216

(2.55) (1.37) (1.29) (2.66) (3.11) (1.32) (2.18) (1.87) (2.37) (4.99) (2.87)

JB normality test p -value 0.0133 0.0331 0.1149 0.0316 0.0113 0.1017 0.0646 0.1380 0.0038 0.0010 0.0188

Downside volatility (0%) 0.0643 0.0502 0.0520 0.0803 0.0842 0.0625 0.0625 0.0604 0.0891 0.0814 0.0639

99% VaR (Cornish-Fisher) 0.0682 0.0549 0.0590 0.0862 0.0973 0.0691 0.0710 0.0679 0.0959 0.0900 0.0686

% of positive months 53.77% 52.74% 55.48% 55.82% 54.11% 52.74% 50.00% 49.32% 55.82% 50.68% 58.56%

Maximum drawdown -0.2440 -0.1720 -0.1892 -0.4117 -0.5081 -0.3374 -0.4416 -0.6114 -0.4052 -0.4301 -0.2746

Sharpe ratio 0.5086 0.5001 0.5553 0.4985 0.1504 0.0950 -0.0097 -0.0969 0.1691 0.2144 0.8160

Sortino ratio (0%) 0.8822 0.9487 1.0487 0.7833 0.2318 0.1437 -0.0150 -0.1536 0.2337 0.3523 1.3836

Omega ratio 1.4719 1.4432 1.4975 1.4610 1.1193 1.0730 0.9929 0.9296 1.1353 1.1791 1.8591

CER 0.0261 0.0253 0.0306 0.0229 -0.0234 -0.0137 -0.0247 -0.0324 -0.0185 -0.0153 0.0587

Panel B: Sharpe ratio (relative position) of individual styles over 5-year non-overlapping subsamples

Jan 1992 - Dec 1996 0.5971 (5) -0.1004 (11) 0.4614 (7) 1.3031 (1) 0.8539 (3) 0.3257 (8) 0.5387 (6) 0.6481 (4) 0.0196 (9) -0.0267 (10) 1.2154 (2)

Jan 1997 - Dec 2001 0.6477 (6) 0.8762 (3) 0.9062 (2) 0.9492 (1) -0.2511 (11) 0.2826 (9) -0.0550 (10) 0.4797 (7) 0.7212 (5) 0.7632 (4) 0.4425 (8)

Jan 2002 - Dec 2006 0.2855 (4) 0.5535 (2) 0.2534 (5) 0.0066 (8) 0.1337 (6) -0.3072 (9) 0.4046 (3) -0.5667 (10) -0.7009 (11) 0.0315 (7) 1.4008 (1)

Jan 2007 - Dec 2011 0.7328 (5) 0.9636 (3) 1.0268 (1) 0.2335 (7) -0.5042 (10) 0.9034 (4) -0.2168 (9) -0.7526 (11) 0.3868 (6) 0.1415 (8) 1.0062 (2)

Jan 2012 - Apr 2016 0.2887 (2) 0.0599 (7) -0.0059 (8) 0.0893 (6) 0.9701 (1) -0.9790 (11) -0.9157 (10) -0.2804 (9) 0.2265 (3) 0.1863 (4) 0.1243 (5)

Panel A: Performance over entire sample Jan 1992 - April 2016

Term 

structure Hedgers' HP Speculators' HP Momentum Value Volatility Open interest Liquidity US$ beta Inflation beta Skewness
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Table 2. Dependence between commodity investment styles. 

Panels A and B report Pearson pairwise correlations and multiple correlations as linear dependence measures among the monthly excess returns of K=11 
long-short investment styles. Panel C reports the non-parametric Spearman rank-order correlation as a (non)linear dependence measure. HP stands for hedging 
pressure. Bold denotes significant correlations at the 10% level or better. The monthly excess returns span the period from January 1992 to April 2016.  

 

  

Panel A: pairwise Pearson correlations

Hedgers' HP 0.13

Speculators' HP 0.24 0.66

Momentum 0.39 0.29 0.45

Value -0.39 -0.24 -0.33 -0.46

Volatility 0.16 0.00 -0.01 0.06 -0.29

Open interest 0.08 0.01 -0.07 -0.22 0.07 0.05

Liquidity 0.01 -0.01 -0.06 -0.10 -0.04 0.13 0.11

US$ beta -0.01 0.08 0.15 0.08 -0.16 0.18 -0.15 0.02

Inflation beta 0.10 0.16 0.16 0.04 -0.38 0.02 -0.02 0.21 0.14

Skewness 0.13 0.26 0.20 0.09 -0.14 0.07 -0.04 0.00 0.09 0.15

Panel B: partial R ²  of regressions of each individual style premia on all other style premia (multiple Pearson correlations)

0.25 0.47 0.53 0.41 0.44 0.16 0.11 0.08 0.10 0.24 0.09

Panel C: pairwise Spearman rank correlations

Hedgers' HP 0.10

Speculators' HP 0.21 0.65

Momentum 0.36 0.27 0.43

Value -0.35 -0.23 -0.31 -0.40

Volatility 0.13 0.00 -0.01 0.04 -0.23

Open interest 0.05 0.04 -0.04 -0.20 0.06 0.06

Liquidity -0.01 -0.01 -0.04 -0.08 -0.03 0.08 0.06

US$ beta 0.05 0.12 0.20 0.06 -0.17 0.18 -0.09 0.03

Inflation beta 0.13 0.21 0.21 0.10 -0.40 0.01 -0.03 0.16 0.19

Skewness 0.10 0.22 0.18 0.06 -0.10 0.09 0.02 0.01 0.10 0.12

SkewnessTerm structure Hedgers' HP Speculators' HP Momentum Value Volatility Open interest Liquidity US$ beta Inflation beta
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  Table 3. Performance of integrated portfolio approaches.  

The table summarizes integration approaches nested in Equation (1) that differ in the determination of the style-exposures. EWI is equally-weighted integration and the 
other five sophisticated integration approaches allow for time-varying, heterogeneous style exposures: optimal integration (OI); rotation-of-styles integration (RSI); 
volatility-timing integration (VTI); cross-sectional pricing integration (CSI); principal components integration (PCI). Panel A reports statistics for monthly excess 
returns of fully-collateralized portfolios from January 1992 to April 2016. CER is annualized certainty-equivalent return with power utility preferences (CRRA parameter c = 5). The asymptotic p-values of the Opdyke (2007) test are for �w: �}��� ≤ �}E versus ��: �}��� > �}E where j is a sophisticated integrated style. The bootstrap 

p-values of the CER test are for �w: �N}��� ≤ �N}E versus ��: �N}��� > �N}E. Mean and standard deviation (StDev) are annualized. Newey-West robust t-statistics 

are shown in parenthesis. Panel B reports the annual Sharpe ratio of each integrated portfolio over 5-year non-overlapping rolling windows and the number in parenthesis 
is the 1 (top) to 6 (bottom) ranking. 

 

Panel A: Performance over entire sample period

Mean 0.0784 0.0601 0.0621 0.0673 0.0671 0.0374

(4.40) (3.30) (2.58) (3.90) (3.96) (1.54)

StDev 0.0831 0.0875 0.1167 0.0812 0.0817 0.1013

Skewness 0.0707 0.1399 0.2014 0.1217 0.0751 0.0509

(0.49) (0.98) (1.40) (0.85) (0.52) (0.36)

Excess Kurtosis 0.0076 0.4066 1.0501 -0.1061 -0.0227 0.7327

(0.03) (1.42) (3.66) (-0.37) (-0.08) (2.56)

JB normality test p -value 0.5000 0.1895 0.0044 0.5000 0.5000 0.0363

Downside volatility (0%) 0.0436 0.0510 0.0703 0.0423 0.0424 0.0603

99% VaR (Cornish-Fisher) 0.0480 0.0534 0.0759 0.0461 0.0478 0.0688

% of positive months 61.30% 56.16% 53.77% 58.90% 60.27% 55.14%

Maximum drawdown -0.1635 -0.1552 -0.2683 -0.1532 -0.1477 -0.2935

Sharpe ratio 0.9432 0.6865 0.5319 0.8294 0.8211 0.3691

Opdyke test p -value (H0: SREWI-SRj≤0) - 0.0737 0.0331 0.1720 0.1615 0.0140

Sortino ratio (0%) 1.7994 1.1791 0.8826 1.5924 1.5843 0.6193

Omega ratio 1.9662 1.6719 1.5145 1.8131 1.7936 1.3172

CER 0.0605 0.0408 0.0283 0.0505 0.0501 0.0118

CER bootstrap p-value (H0: CEREWI-CERj≤0) - 0.0585 0.0565 0.0069 0.0186 0.0119

Panel B: Sharpe ratio of integrated styles and relative position over 5-year non-overlapping subsamples

Jan 1992 - Dec 1996 1.7118 (2) 1.7335 (1) 0.6873 (5) 1.4713 (4) 1.5725 (3) 0.5701 (6)

Jan 1997 - Dec 2001 1.4263 (1) 1.0070 (4) 0.9146 (5) 1.3081 (3) 1.3511 (2) 0.7326 (6)

Jan 2002 - Dec 2006 0.5765 (1) 0.1060 (6) 0.2510 (5) 0.4559 (3) 0.3129 (4) 0.5703 (2)

Jan 2007 - Dec 2011 0.9035 (2) 0.6103 (4) 0.5995 (5) 0.9706 (1) 0.6639 (3) 0.0796 (6)

Jan 2012 - Apr 2016 0.1442 (2) -0.1356 (5) 0.0956 (3) -0.0469 (4) 0.2409 (1) -0.2159 (6)

EWI CSI PCIRSIOI VTI
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Table 4. Integration effectiveness. 

The table reports coefficients, Newey-West robust t-ratios and explanatory power (coefficient of determination R2) for regressions of the January 1992 - April 2016 
monthly excess returns of each integrated portfolio on those of the K standalone portfolios summarized in Table 1. The integration methods differ in the determination 
of the style-exposures; equally-weighted integration (EWI), optimal-integration (OI), rotation-of-styles integration (RSI), volatility-timing integration (VTI), cross-
sectional pricing integration (CSI) and principal components integration (PCI). All portfolios are fully collateralized.  

 

Intercept

Term 

structure

Hedgers' 

HP

Speculators' 

HP Momentum Value Volatility

Open 

interest Liquidity US$ beta

Inflation 

shocks Skewness R²

EWI 0.0003 0.1943 0.2090 0.2088 0.1884 0.1918 0.1889 0.2014 0.1987 0.1890 0.1963 0.1930 97.59%

(2.14) (20.96) (15.85) (20.10) (18.94) (20.23) (16.07) (22.72) (22.28) (21.96) (21.02) (22.16)

OI -0.0019 0.1204 0.0565 0.2772 0.2999 0.3857 0.1264 0.0992 0.0357 0.0941 0.2078 0.2671 68.13%

(-2.34) (2.27) (1.25) (4.84) (4.92) (8.62) (2.98) (2.59) (0.77) (2.62) (6.02) (6.69)

RSI -0.0003 0.1359 0.0586 0.1325 0.5354 0.0373 -0.0396 -0.0470 -0.0094 0.0666 0.0168 0.1405 55.68%

(-0.28) (2.13) (0.82) (1.74) (6.32) (0.57) (-0.65) (-0.85) (-0.17) (1.49) (0.32) (1.96)

VTI 0.0003 0.1658 0.2645 0.2221 0.1157 0.1225 0.2231 0.2186 0.2493 0.1401 0.1157 0.1633 94.88%

(0.98) (11.24) (12.84) (12.14) (7.75) (8.36) (14.04) (16.78) (16.28) (9.82) (10.51) (10.31)

CSI -0.0004 0.1821 0.1797 0.1388 0.1656 0.2714 0.2319 0.1985 0.2033 0.2046 0.2425 0.2036 90.96%

(-0.95) (8.32) (7.16) (5.14) (9.10) (13.03) (7.95) (10.52) (12.12) (12.59) (14.09) (9.64)

PCI 0.0006 0.0602 -0.1195 0.0935 0.0123 0.1052 0.2592 0.0632 0.0482 0.1247 0.0068 0.2234 16.90%

(0.35) (0.93) (-1.05) (0.92) (0.17) (1.62) (3.15) (0.87) (0.67) (1.60) (0.09) (3.16)

Standalone style portfolios

Integration 

methods
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Figure A.I. Number of styles and return-to-risk profile of sophisticated integration strategies.  

This figure reports box-and-whisker plots of the Jan. 1992 – Apr. 2016 Sharpe ratio, mean return and volatility (all annualized; vertical axis) of 
sophisticated integrated portfolios versus the number of styles K (horizontal axis). OI is optimal-integration, RSI is rotation-of-styles integration, VTI is 
volatility-timing integration, CSI is cross-sectional pricing integration and PCI is principal-components integration. The dash lines are the maximum and 
minimum of the performance measure across the 11 style portfolios. In each plot the rectangular area for each K denotes the interquartile (25th-75th) range, 
the middle line represents the median and the crosses beyond the whiskers represents outliers defined as points outside the 1th-99th percentiles. 
 
     Panel A1: �}´�                        Panel A2: �´�             Panel A3: 0´� 

            
 

      Panel B1: �}�#�                        Panel B2: ��#�                        Panel B3: 0�#� 
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     (Cont.) Figure A.I. Number of styles and return-to-risk profile of sophisticated integration strategies. 
 
 
     Panel C1: �}µ��                          Panel C2: �µ��     Panel C3: 0µ�� 

              
 
 

     Panel D1: �}�#�                         Panel D2: ��#�        Panel D3: 0�#� 
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    (Cont.) Figure A.I. Number of styles and return-to-risk profile of sophisticated integration strategies. 
 

     Panel E1: �}<��                        Panel E2: �<��       Panel E3: 0<�� 
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Table A.I. Performance of long-only commodity benchmarks and individual-weight-
optimized portfolio.  

The table reports statistics on the performance of an equally-weighted monthly rebalanced 
portfolio of the 28 commodities (EW), the S&P-GSCI, and the portfolio based on the 
optimization of the individual commodity weights using power utility (and ensuring full 
investment). All portfolios are fully-collateralized. Panel A reports statistics for monthly excess 
returns obtained over the entire sample period from Jan. 1992 to Ap. 2016. Mean and standard 
deviation (StDev) are annualized. Robust Newey-West significance t-statistics for mean excess 
returns are reported in parentheses. CER is the annualized certainty-equivalent return based on 
power utility preferences (c = 5). Panel B reports the annual Sharpe ratio of each portfolio 
over 5-year non-overlapping rolling periods and the number in parenthesis is the overall 
ranking among the eleven individual styles reported in Table 1. 
 

S&P GSCI

Panel A: Performance over entire sample period Jan. 1992 to Apr. 2016

Mean -0.0098 0.0007 0.0603

(-0.32) (0.01) (2.05)

StDev 0.1266 0.2155 0.1511

Skewness -0.8438 -0.6714 0.1253

(-5.89) (-4.68) (0.87)

Excess Kurtosis 3.9732 2.4723 1.3349

(13.86) (8.62) (4.66)

JB normality test p -value 0.0010 0.0010 0.0014

Downside volatility (0%) 0.1012 0.1638 0.0902

99% VaR (Cornish-Fisher) 0.1326 0.2007 0.1058

% of positive months 52.74% 54.45% 53.08%

Maximum drawdown -0.5672 -0.8556 -0.2990

Sharpe ratio -0.0776 0.0032 0.3993

Sortino ratio (0%) -0.0971 0.0043 0.6690

Omega ratio 0.9399 1.0025 1.3518

CER -0.0557 -0.1405 0.0033

Panel B: Sharpe ratio over 5-year non-overlapping subsamples

Jan 1992 - Dec 1996 0.6581 (4) 0.5935 (6) 0.1610 (9)

Jan 1997 - Dec 2001 -0.7941 (12) -0.0228 (10) 0.4475 (8)

Jan 2002 - Dec 2006 0.5637 (2) 0.5489 (3) -0.1318 (9)

Jan 2007 - Dec 2011 -0.0934 (9) -0.0940 (9) 0.8393 (5)

Jan 2012 - Apr 2016 -0.5484 (10) -0.8561 (10) 0.5399 (2)

EW

Power utility with 

individual 

commodities
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Table A.II. Style-integration approaches based on standardized signals or standardized rankings. 

The table summarizes the performance of style-integration approaches nested in Equation (1) for a scoring matrix �� with standardized-signals 
(Panel A) or standardized-rankings (Panel B). EWI is equally-weighted integration and the other (sophisticated) integrations allow for time-
varying, heterogeneous style exposures: optimal integration (OI); rotation-of-styles integration (RSI); volatility-timing integration (VTI); cross-
sectional pricing integration (CSI); principal components integration (PCI). CER is the annualized certainty-equivalent return for an investor 
with power utility preferences (CRRA parameter c = 5). The asymptotic p-values of the Opdyke (2007) test are for �w: �}��� ≤ �}E vs ��: �}��� > �}E where j is a sophisticated integration. The CER bootstrap p-values are for �w: �N}��� ≤ �N}E vs ��: �N}��� > �N}E . Mean 

and standard deviation (StDev) are annualized. Newey-West robust t-statistics are shown in parenthesis. The monthly excess returns of the 
fully-collateralized integrated portfolios span the Jan. 1992 to Apr. 2016 period. 

 

 

EWI OI RSI VTI CSI PCI EWI OI RSI VTI CSI PCI

Mean 0.0798 0.0724 0.0497 0.0660 0.0712 0.0273 0.0777 0.0647 0.0681 0.0667 0.0655 0.0267

(4.55) (3.74) (1.98) (4.03) (4.22) (1.08) (4.40) (3.49) (2.83) (3.89) (3.87) (1.09)

StDev 0.0861 0.0976 0.1297 0.0813 0.0855 0.1095 0.0826 0.0916 0.1223 0.0811 0.0820 0.1010

Skewness 0.0113 -0.1496 -0.0346 0.1233 -0.0994 0.1886 0.0575 0.1273 0.2086 0.1316 0.0361 0.0517

(0.08) (-1.04) (-0.24) (0.86) (-0.69) (1.32) (0.40) (0.89) (1.46) (0.92) (0.25) (0.36)

Excess Kurtosis 0.2263 0.1766 0.5737 0.0380 0.1664 1.3339 0.0934 0.4720 0.8656 -0.0865 0.0674 0.6995

(0.79) (0.62) (2.00) (0.13) (0.58) (4.65) (0.33) (1.65) (3.02) (-0.30) (0.24) (2.44)

JB normality test p -value 0.5000 0.4366 0.1059 0.5000 0.5000 0.0013 0.5000 0.1415 0.0104 0.5000 0.5000 0.0445

Downside volatility (0%) 0.0489 0.0583 0.0829 0.0432 0.0498 0.0672 0.0436 0.0532 0.0717 0.0421 0.0431 0.0614

99% VaR (Cornish-Fisher) 0.0522 0.0635 0.0889 0.0471 0.0542 0.0763 0.0485 0.0564 0.0776 0.0460 0.0493 0.0692

% of positive months 59.25% 57.88% 54.45% 59.59% 60.62% 50.34% 61.64% 58.56% 52.40% 58.90% 59.93% 52.74%

Maximum drawdown -0.1721 -0.1708 -0.3996 -0.1441 -0.1930 -0.3554 -0.1689 -0.1409 -0.2650 -0.1523 -0.1680 -0.3055

Sharpe ratio 0.9275 0.7418 0.3834 0.8112 0.8328 0.2496 0.9411 0.7056 0.5566 0.8228 0.7994 0.2645

Opdyke test p-value (H0: SREWI-SRi≤0) - 0.1527 0.0066 0.2144 0.2200 0.0025 - 0.0920 0.0407 0.1670 0.1250 0.0042

Sortino ratio (0%) 1.6320 1.2408 0.5994 1.5283 1.4304 0.4066 1.7817 1.2143 0.9497 1.5862 1.5190 0.4352

Omega ratio 1.9740 1.7168 1.3380 1.7916 1.8318 1.2124 1.9649 1.6938 1.5380 1.8044 1.7633 1.2182

CER 0.0607 0.0480 0.0075 0.0491 0.0524 -0.0024 0.0601 0.0435 0.0310 0.0500 0.0484 0.0013

CER bootstrap p-value (H0: CEREWI-CERj≤0) - 0.1852 0.0088 0.0574 0.0380 0.0009 - 0.0953 0.0799 0.0115 0.0087 0.0015

Panel A: Standardized-signals Panel B: Standardized-rankings
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Table A. III. Performance of additional sophisticated integrated portfolios. 

The table summarizes variants of the sophisticated integration approaches reported in Table 3. OI is optimal-integration, RSI(3) is rotation-of-styles 
integration that focuses (equal-weights) on the three best styles, VTI is volatility-timing integration, RRTI is reward-to-risk timing integration, TSI is 
time-series integration, PCI(1) is first principal component integration. DA denotes disappointment aversion and ¦ is a tuning parameter that captures 
timing aggressiveness. CER is annualized certainty-equivalent return with power utility preferences (CRRA parameter c = 5). The asymptotic p-
values of the Opdyke (2007) test are for �w: �}��� ≤ �}E versus ��: �}��� > �}E where j is the integrated style at hand. The CER bootstrap p-values 

are for �w: �N}��� ≤ �N}E  versus ��: �N}��� > �N}E . Mean and standard deviation (StDev) are annualized. Newey-West t-statistics are in 

parenthesis. The last two rows report the portfolio turnover and the Sharpe ratio after 8.6 bps proportional costs per trade. The monthly excess returns 
of the fully-collateralized integrated portfolios span the Jan. 1992 to Apr. 2016 period. 
 

RSI(3) TSI PCI(1)

Mean-

variance 

utility

Exponen-

tial utility

Power 

utility with 

DA Variance

Power 

utility

Mean-

variance 

utility

Exponen-

tial utility

Power 

utility with 

DA Variance

Mean 0.0606 0.0610 0.0552 0.0483 0.0432 0.0429 0.0429 0.0387 0.0248 0.0596 0.0464 0.0401 0.0713 0.0257

(3.31) (3.32) (3.24) (3.10) (2.40) (2.40) (2.38) (2.19) (1.88) (2.99) (2.67) (2.55) (4.11) (1.13)

StDev 0.0881 0.0882 0.0862 0.0736 0.0862 0.0859 0.0860 0.0845 0.0684 0.0959 0.0811 0.0880 0.0813 0.1014

Skewness 0.1504 0.1517 0.1144 0.0142 0.2913 0.2977 0.2908 0.3922 0.0240 0.5483 0.0738 0.1738 0.1526 0.0209

(1.05) (1.06) (0.80) (0.10) (2.03) (2.08) (2.03) (2.74) (0.17) (3.82) (0.51) (1.21) (1.06) (0.15)

Excess Kurtosis 0.4555 0.4120 0.2821 0.0357 0.5061 0.5263 0.5093 0.9852 -0.1571 1.2522 0.0994 0.8465 0.1208 0.5189

(1.59) (1.44) (0.98) (0.12) (1.77) (1.84) (1.78) (3.44) (-0.55) (4.37) (0.35) (2.95) (0.42) (1.81)

JB normality test p -value 0.1325 0.1676 0.4046 0.5000 0.0300 0.0262 0.0298 0.0023 0.5000 0.0010 0.5000 0.0133 0.4843 0.1576

Downside volatility (0%) 0.0509 0.0511 0.0491 0.0433 0.0470 0.0469 0.0468 0.0464 0.0398 0.0519 0.0468 0.0505 0.0426 0.0630

99% VaR (Cornish-Fisher) 0.0538 0.0535 0.0527 0.0453 0.0511 0.0509 0.0511 0.0507 0.0428 0.0533 0.0498 0.0572 0.0465 0.0691

% of positive months 56.85% 56.16% 58.22% 59.93% 51.71% 51.71% 51.37% 53.08% 54.11% 54.79% 55.48% 51.03% 60.27% 53.77%

Maximum drawdown -0.1551 -0.1557 -0.1495 -0.1936 -0.2136 -0.2146 -0.2339 -0.2558 -0.1994 -0.1560 -0.1484 -0.1616 -0.1632 -0.2528

Sharpe ratio 0.6883 0.6915 0.6398 0.6570 0.5013 0.4991 0.4990 0.4574 0.3630 0.6213 0.5721 0.4552 0.8775 0.2529

Opdyke test p-value (H0: SREWI-SRi≤0) 0.0126 0.0778 0.0389 0.0761 0.0131 0.0741 0.0124 0.0075 0.0111 0.0359 0.0159 0.0048 0.2951 0.0081

Sortino ratio (0%) 1.1900 1.1926 1.1236 1.1163 0.9188 0.9148 0.9172 0.8327 0.6235 1.1480 0.9914 0.7933 1.6756 0.4075

Omega ratio 1.6741 1.6793 1.6087 1.6262 1.4561 1.4548 1.4529 1.4181 1.3030 1.6188 1.5178 1.4063 1.8878 1.2105

CER 0.0411 0.0414 0.0365 0.0346 0.0248 0.0246 0.0246 0.0211 0.0132 0.0370 0.0299 0.0208 0.0544 0.0000

CER bootstrap p-value (H0: CEREWI-CERj≤0) 0.0644 0.0615 0.0253 0.0364 0.0037 0.0057 0.0052 0.0031 0.0040 0.0413 0.0049 0.0038 0.0632 0.0077

Turnover 0.6694 0.6688 0.6766 0.6837 0.7161 0.7159 0.7176 0.7507 0.7634 0.6208 0.6009 0.5632 0.6253 0.5294

Sharpe ratio (TC=0.086%) 0.6092 0.6126 0.5581 0.5614 0.4153 0.4130 0.4126 0.3651 0.2497 0.5544 0.4955 0.3892 0.7979 0.1990

OI (ω≥0) RRTI      

(η=4)
VTI     

(η=4)
OI (∀ω)
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Table A.IV. Effectiveness of additional sophisticated integration strategies. 

The table reports coefficients, Newey-West robust t-ratios and explanatory power (coefficient of determination R2) for regressions of the Jan. 1992 
to Apr. 2016 monthly excess returns of each additional sophisticated integrated portfolio on the excess returns of the K=11 standalone-style 
portfolios. The integration methods differ in the determination of the style-exposures as discussed in Section 4 of the paper. OI is optimal-
integration, RSI(3) is rotation-of-styles integration (equal-weights) of the three best styles, VTI is volatility-timing integration, RRTI is reward-
to-risk timing integration, TSI is time-series integration, PCI(1) is 1st principal component integration. The parameter ¦ captures the timing 
aggressiveness of the VTI and RRTI strategies. HP is hedging pressure. DA is disappointment aversion. All portfolios are fully collateralized.  

 

Intercept

Term 

structure Hedgers' HP

Speculators' 

HP Momentum Value Volatility

Open 

interest Liquidity

US$ 

beta

Inflation 

beta Skewness R²

OI with ω≥0

Mean-variance utility -0.0025 0.1069 0.0087 0.1633 0.3111 0.3107 0.1325 0.0516 -0.0331 0.0835 0.2010 0.2523 53.23%

(-2.61) (2.02) (0.13) (2.08) (4.33) (6.06) (2.70) (1.06) (-0.59) (2.10) (4.82) (5.66)

Exponential utility -0.0019 0.1240 0.0571 0.2779 0.3005 0.3889 0.1301 0.1006 0.0369 0.0933 0.2079 0.2699 67.98%

(-2.31) (2.29) (1.26) (4.69) (4.83) (8.61) (3.05) (2.61) (0.79) (2.56) (5.94) (6.74)

Power utility with DA -0.0025 0.1446 0.1183 0.2519 0.2905 0.4035 0.1450 0.1343 0.0678 0.0847 0.1654 0.2692 71.71%

(-3.15) (2.86) (2.44) (4.42) (5.01) (9.25) (3.51) (3.42) (1.57) (2.48) (5.08) (6.95)

Variance 0.0006 0.1135 0.0779 0.1652 0.1614 0.3128 0.2154 0.1652 0.2199 0.1095 0.0954 0.0165 50.12%

(0.62) (2.59) (1.39) (3.51) (3.60) (8.66) (4.79) (3.69) (4.68) (2.83) (2.53) (0.48)

OI with ∀ω
Power utility -0.0024 0.1075 0.0098 0.1625 0.3135 0.3109 0.1325 0.0522 -0.0318 0.0825 0.2011 0.2524 53.18%

(-2.59) (2.02) (0.15) (2.06) (4.30) (6.00) (2.72) (1.07) (-0.56) (2.05) (4.84) (5.63)

Mean-variance utility -0.0020 0.1208 0.0662 0.2706 0.3042 0.3944 0.1329 0.0979 0.0350 0.0993 0.2088 0.2707 68.87%

(-2.43) (2.32) (1.49) (4.85) (5.15) (8.95) (3.09) (2.54) (0.75) (2.81) (6.04) (6.80)

Exponential utility -0.0025 0.1067 0.0115 0.1657 0.3203 0.3100 0.1291 0.0567 -0.0380 0.0825 0.2002 0.2492 54.12%

(-2.64) (2.04) (0.18) (2.12) (4.42) (6.02) (2.69) (1.19) (-0.67) (2.06) (4.89) (5.60)

Power utility with DA -0.0027 0.1290 0.0340 0.1708 0.2879 0.3163 0.1510 0.0575 -0.0673 0.0737 0.1564 0.2316 51.00%

(-2.68) (2.37) (0.49) (2.12) (3.96) (5.72) (2.92) (1.08) (-1.18) (1.81) (3.85) (5.22)

Variance 0.0048 0.0179 0.0728 0.0815 0.0974 0.1845 0.1945 0.0693 0.0898 0.0170 0.0104 -0.0013 17.40%

(0.38) (0.37) (1.18) (1.35) (2.14) (4.06) (4.30) (1.28) (1.59) (0.56) (0.29) (-0.03)

RSI(3) -0.0150 0.1678 0.0932 0.2476 0.2210 0.0480 0.0385 0.0001 0.0800 0.0955 0.0717 0.3244 64.90%

(-1.29) (3.03) (1.85) (3.94) (3.71) (1.01) (0.85) (0.00) (1.97) (2.63) (1.90) (7.20)

VTI η=4 0.0007 0.0949 0.3263 0.1746 0.0144 0.0192 0.2698 0.1800 0.2915 0.0763 -0.0060 0.0646 71.84%

(0.89) (3.22) (5.98) (3.62) (0.48) (0.54) (6.26) (5.47) (6.98) (2.67) (-0.25) (2.08)

RRTI η=4 -0.0229 0.0450 0.2789 0.1884 0.1769 0.0547 0.0422 0.0459 0.0795 0.0610 -0.0041 0.2708 58.93%

(-1.97) (1.00) (4.86) (3.45) (3.28) (1.17) (0.95) (0.97) (1.81) (1.67) (-0.11) (5.01)

TSI 0.0021 0.1583 0.1767 0.2527 0.1592 0.1561 0.1840 0.2132 0.1545 0.1842 0.1774 0.1815 92.40%

(0.56) (8.81) (7.43) (10.65) (8.00) (9.68) (9.67) (12.15) (8.34) (11.29) (13.38) (12.40)

PCI(1) 0.0052 0.0320 -0.2113 0.0960 0.0601 0.1488 0.1610 0.0102 -0.0781 0.1709 -0.0780 0.1497 14.93%

(0.24) (0.49) (-2.04) (0.93) (0.72) (2.10) (1.96) (0.12) (-1.01) (2.05) (-1.11) (2.22)
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Table A.V. Data-snooping-robust test for superior performance.  

The table reports bootstrap p-values for the Superior Predictive Ability test of Hansen (2005) 
to control for data snooping risk in the comparison among the M=31 long-short portfolios (11 
standalone-style portfolios and 20 integrated portfolios altogether considered in the paper). The 
empirical distribution of the t-statistic is constructed by a random-length block bootstrap 
simulation with B=10,000 replications. The null hypothesis is that the best of the M portfolios 
incurs a larger “loss” than the benchmark EWI portfolio. 

 

q=0.2 q=0.5

EWI Linear 0.5106 0.5116

Exp(λ = 1) 0.4197 0.4430

Exp(λ = 2) 0.3602 0.3767

Benchmark Loss function

Expected block length 

1/q
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Table A.VI. Economic sub-period analysis of standalone-style portfolios and integrated portfolios.  

The table reports statistics on the performance of the K=11 standalone-style portfolios and the integrated portfolios over sub-periods defined according to 
economic criteria: high versus low commodity market volatility periods determined by a GARCH(1,1) model fitted to the monthly excess returns of a long-
only equally-weighted portfolio of 28 commodities (Panel A), pre- and post-financialization periods (Panel B), NBER-dated recession and expansion periods 
(Panel C). HP denotes hedging pressure. EWI is equally-weighted integration, OI is optimal-integration, RSI is rotation-of-styles integration, VTI is volatility-
timing integration, CSI is cross-sectional pricing integration and PCI is principal-components integration. The length of each sub-period is indicated in 
parenthesis next to the title. Mean and standard deviation (StDev) of monthly excess returns are annualized. CER is the annualized certainty-equivalent return 
with power utility preferences (CRRA parameter c = 5). The asymptotic p-values of the Opdyke (2007) test pertain to the hypotheses �w: �}��� ≤ �}E 

versus ��: �}��� > �}E where j denotes a given integrated style. The final row reports bootstrap p-values for the hypotheses �w: �N}��� ≤ �N}E versus ��: �N}��� > �N}E .   

 

 

  

Term 

structure

Hedgers' 

HP Speculators' HP Momentum Value Volatility

Open 

interest Liquidity US$ beta

Inflation 

beta Skewness EWI OI RSI VTI CSI PCI

Mean 0.0291 0.0737 0.0637 -0.0319 0.0407 0.0164 -0.0314 -0.0339 0.0524 0.0098 0.0370 0.0442 0.0184 0.0201 0.0422 0.0346 0.0036

StDev 0.1075 0.1011 0.1024 0.1281 0.1296 0.0935 0.1000 0.0909 0.1341 0.1321 0.1066 0.0946 0.0952 0.1141 0.0910 0.0906 0.1083

Maximum drawdown -0.2199 -0.1461 -0.1295 -0.3140 -0.4248 -0.2344 -0.3685 -0.3784 -0.2959 -0.3026 -0.2515 -0.1635 -0.2036 -0.2557 -0.1532 -0.1477 -0.2817

Sharpe ratio 0.2712 0.7291 0.6219 -0.2487 0.3143 0.1757 -0.3141 -0.3733 0.3912 0.0745 0.3472 0.4666 0.1937 0.1757 0.4638 0.3822 0.0331

Opdyke test p-value (H0: SREWI-SRi≤0) 0.2981 0.8184 0.6940 0.0287 0.3953 0.2560 0.0386 0.0213 0.4095 0.1269 0.3533 - 0.1392 0.1771 0.4916 0.2352 0.1757

CER 0.0006 0.0484 0.0380 -0.0738 -0.0010 -0.0054 -0.0574 -0.0555 0.0055 -0.0341 0.0091 0.0219 -0.0040 -0.0123 0.0217 0.0144 -0.0257

CER bootstrap p-value (H0: CEREWI-CERj≤0) 0.3158 0.8535 0.6942 0.0014 0.3358 0.2197 0.0148 0.0068 0.3662 0.0868 0.3982 - 0.0780 0.1442 0.5181 0.1478 0.1000

Mean 0.0710 0.0340 0.0498 0.1122 0.0085 0.0051 0.0149 0.0036 0.0044 0.0385 0.1152 0.0963 0.0818 0.0839 0.0804 0.0840 0.0550

StDev 0.1136 0.0919 0.0963 0.1230 0.1301 0.0953 0.0951 0.0981 0.1171 0.1349 0.1088 0.0762 0.0828 0.1178 0.0756 0.0765 0.0973

Maximum drawdown -0.2001 -0.1720 -0.2297 -0.3774 -0.4859 -0.3062 -0.2967 -0.4434 -0.3832 -0.3832 -0.2717 -0.1163 -0.1226 -0.2256 -0.1249 -0.1600 -0.1537

Sharpe ratio 0.6256 0.3696 0.5174 0.9122 0.0652 0.0535 0.1570 0.0365 0.0372 0.2854 1.0595 1.2630 0.9876 0.7125 1.0643 1.0982 0.5650

Opdyke test p-value (H0: SREWI-SRi≤0) 0.0135 0.0004 0.0018 0.1315 0.0011 0.0000 0.0004 0.0000 0.0001 0.0003 0.2589 - 0.1413 0.0370 0.1495 0.2071 0.0152

CER 0.0393 0.0133 0.0267 0.0734 -0.0351 -0.0180 -0.0076 -0.0204 -0.0311 -0.0055 0.0845 0.0807 0.0642 0.0494 0.0655 0.0686 0.0313

CER bootstrap p-value (H0: CEREWI-CERj≤0) 0.0179 0.0009 0.0106 0.4609 0.0035 0.0000 0.0003 0.0000 0.0001 0.0010 0.5316 - 0.1956 0.1591 0.0002 0.0417 0.0315

Individual styles

Panel A: Commodity market volatility regimes

Integrated Styles

High volatility regime (T1= 100 months)

Low-volatility regime (T2=192 months)
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(Cont.) Table A.VI. Economic sub-period analysis of standalone-style portfolios and integrated portfolios 

 
 

 

Term 

structure

Hedgers' 

HP Speculators' HP Momentum Value Volatility

Open 

interest Liquidity US$ beta

Inflation 

beta Skewness EWI OI RSI VTI CSI PCI

Mean 0.0706 0.0349 0.0433 0.0796 0.0211 0.0159 0.0350 0.0278 0.0101 0.0540 0.1058 0.1040 0.0972 0.0739 0.0888 0.0988 0.0707

StDev 0.1163 0.0849 0.0959 0.1333 0.1329 0.0943 0.0983 0.0942 0.1253 0.1300 0.1148 0.0760 0.0899 0.1284 0.0735 0.0771 0.1017

Maximum drawdown -0.1731 -0.1720 -0.1892 -0.4036 -0.3870 -0.2145 -0.2967 -0.3477 -0.3666 -0.2731 -0.2746 -0.0761 -0.1183 -0.2683 -0.0711 -0.0852 -0.1615

Sharpe ratio 0.6068 0.4108 0.4517 0.5973 0.1589 0.1688 0.3561 0.2946 0.0808 0.4154 0.9215 1.3679 1.0811 0.5754 1.2070 1.2802 0.6956

Opdyke test p-value (H0: SREWI-SRi≤0) 0.0090 0.0008 0.0007 0.0065 0.0019 0.0001 0.0027 0.0005 0.0001 0.0014 0.0864 - 0.1581 0.0058 0.2403 0.3552 0.0293

CER 0.0374 0.0169 0.0203 0.0347 -0.0247 -0.0065 0.0108 0.0062 -0.0304 0.0141 0.0717 0.0882 0.0759 0.0325 0.0743 0.0827 0.0446

CER bootstrap p-value (H0: CEREWI-CERj≤0) 0.0115 0.0014 0.0009 0.0599 0.0033 0.0000 0.0091 0.0001 0.0000 0.0031 0.2965 - 0.2661 0.0338 0.0032 0.1578 0.0685

Mean 0.0379 0.0648 0.0698 0.0401 0.0173 -0.0004 -0.0496 -0.0594 0.0353 -0.0056 0.0649 0.0437 0.0098 0.0461 0.0383 0.0243 -0.0078

StDev 0.1047 0.1077 0.1016 0.1158 0.1259 0.0951 0.0934 0.0961 0.1205 0.1387 0.0991 0.0912 0.0824 0.0990 0.0901 0.0864 0.0996

Maximum drawdown -0.2440 -0.1506 -0.1221 -0.2000 -0.4248 -0.3374 -0.4361 -0.5087 -0.2959 -0.3736 -0.1135 -0.1635 -0.1552 -0.1418 -0.1532 -0.1477 -0.2935

Sharpe ratio 0.3615 0.6020 0.6869 0.3465 0.1378 -0.0045 -0.5314 -0.6187 0.2931 -0.0404 0.6554 0.4793 0.1195 0.4654 0.4246 0.2808 -0.0787

Opdyke test p-value (H0: SREWI-SRi≤0) 0.3551 0.6915 0.7883 0.3512 0.2580 0.1108 0.0057 0.0023 0.2645 0.0430 0.7124 - 0.0520 0.4803 0.3114 0.0465 0.0882

CER 0.0107 0.0367 0.0445 0.0071 -0.0217 -0.0234 -0.0728 -0.0846 -0.0025 -0.0552 0.0410 0.0231 -0.0068 0.0226 0.0183 0.0058 -0.0326

CER bootstrap p-value (H0: CEREWI-CERj≤0) 0.3654 0.6836 0.7902 0.2800 0.2580 0.0846 0.0013 0.0006 0.2282 0.0261 0.7093 - 0.0422 0.3986 0.2347 0.0386 0.0423

Panel C: NBER-dated recession and expansions

Mean 0.1574 0.1642 0.1891 0.0532 0.0453 0.0214 -0.0127 -0.1317 0.0473 -0.0532 -0.0489 0.0855 0.0914 0.1427 0.0984 0.0424 0.0439

StDev 0.1135 0.1306 0.1332 0.1596 0.1461 0.1083 0.1212 0.0909 0.1588 0.1380 0.1355 0.1034 0.1005 0.1159 0.1042 0.0894 0.1287

Maximum drawdown -0.0900 -0.1345 -0.0920 -0.2000 -0.1841 -0.1389 -0.1860 -0.3012 -0.2959 -0.2859 -0.2471 -0.1635 -0.1022 -0.0627 -0.1532 -0.1477 -0.2112

Sharpe ratio 1.3871 1.2576 1.4199 0.3332 0.3103 0.1977 -0.1051 -1.4482 0.2981 -0.3858 -0.3609 0.8270 0.9093 1.2308 0.9445 0.4748 0.3407

Opdyke test p-value (H0: SREWI-SRi≤0) 0.7898 0.7231 0.8050 0.2434 0.3418 0.2163 0.1369 0.0076 0.2210 0.0337 0.0616 - 0.5512 0.6962 0.6176 0.1515 0.1115

CER 0.1241 0.1212 0.1433 -0.0072 -0.0034 -0.0077 -0.0492 -0.1570 -0.0188 -0.1026 -0.0960 0.0588 0.0674 0.1097 0.0715 0.0227 0.0033

CER bootstrap p-value (H0: CEREWI-CERj≤0) 0.9730 0.8536 0.8819 0.2336 0.3528 0.2699 0.0378 0.0033 0.1837 0.0013 0.1475 - 0.5968 0.7840 0.8792 0.0182 0.0464

Mean 0.0460 0.0352 0.0403 0.0639 0.0168 0.0077 0.0003 0.0037 0.0180 0.0374 0.1030 0.0777 0.0568 0.0535 0.0640 0.0697 0.0367

StDev 0.1110 0.0902 0.0932 0.1224 0.1282 0.0932 0.0942 0.0956 0.1191 0.1334 0.1046 0.0809 0.0862 0.1167 0.0785 0.0810 0.0982

Maximum drawdown -0.2440 -0.1720 -0.2039 -0.4117 -0.5469 -0.3374 -0.4412 -0.4657 -0.3745 -0.3577 -0.1183 -0.1270 -0.1552 -0.2683 -0.1371 -0.1418 -0.3372

Sharpe ratio 0.4144 0.3905 0.4324 0.5220 0.1309 0.0823 0.0034 0.0388 0.1513 0.2803 0.9853 0.9597 0.6586 0.4585 0.8153 0.8606 0.3736

Opdyke test p-value (H0: SREWI-SRi≤0) 0.0113 0.0031 0.0053 0.0365 0.0067 0.0005 0.0003 0.0001 0.0007 0.0019 0.5417 - 0.0512 0.0152 0.1285 0.2276 0.0226

CER 0.0157 0.0151 0.0187 0.0261 -0.0255 -0.0143 -0.0221 -0.0192 -0.0185 -0.0061 0.0751 0.0607 0.0380 0.0197 0.0483 0.0530 0.0127

CER bootstrap p-value (H0: CEREWI-CERj≤0) 0.0086 0.0058 0.0071 0.0949 0.0074 0.0004 0.0001 0.0000 0.0010 0.0027 0.7372 - 0.0336 0.0207 0.0017 0.0552 0.0205

Integrated Styles

Recession regime (T1=28 months)

Expansion regime (T2=264 months)

Panel B: Pre-and post-financialization regimes

Pre-financialization (Jan 1992-Dec 2005; T1= 168 months)

Financialization (Jan 2006-April 2016; T2=124 months)

Individual styles


